diff --git a/notebooks/memos/_memo_prestations_familiales.ipynb b/notebooks/memos/_memo_prestations_familiales.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..1acc06909861b4b788c906562c74776c77efa305
--- /dev/null
+++ b/notebooks/memos/_memo_prestations_familiales.ipynb
@@ -0,0 +1,991 @@
+{
+ "cells": [
+  {
+   "cell_type": "code",
+   "execution_count": 1,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "iaidrdi has been updated in leximpact-survey-scenario\n",
+      "plus_values_prelevement_forfaitaire_unique_ir has been updated in leximpact-survey-scenario\n",
+      "rfr_plus_values_hors_rni has been updated in leximpact-survey-scenario\n",
+      "rpns_imposables has been updated in leximpact-survey-scenario\n",
+      "rpns_autres_revenus has been updated in leximpact-survey-scenario\n",
+      "paje_naissance has been updated in leximpact-survey-scenario\n"
+     ]
+    }
+   ],
+   "source": [
+    "import pandas as pd\n",
+    "import os\n",
+    "\n",
+    "from leximpact_prepare_data.pipeline_survey_scenario import PipelineErfsSurveyScenario"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Données de la CNAF : Dépenses tous régimes des prestations familiales et sociales gérées par la branche Famille\n",
+    "http://data.caf.fr/dataset/les-depenses-tous-regimes-de-prestations-familiales-et-sociales\n",
+    "\n",
+    "Les chiffres france entière tout régimes correspondent aux chiffres publiés dans la fiche 33 du PANORAMA DREES Minima sociaux et prestations sociales - Ménages aux revenus modestes et redistribution - Édition 2023\n",
+    "\n",
+    "https://drees.solidarites-sante.gouv.fr/publications-communique-de-presse-documents-de-reference/panoramas-de-la-drees/minima-sociaux-et"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 2,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "current_path = os.getcwd()\n",
+    "prestations = pd.read_csv(f\"{current_path}/data/cnaf_prestations_2021.csv\",sep = \";\",encoding = \"iso-8859-3\",decimal = ',')"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 11,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "Index(['En millions d'euros', 'Dep_Ts_Regimes_Metro_2021',\n",
+       "       'Dep_Caf_Metro_2021', 'Dep_Ts_Regimes_Dom_2021', 'Dep_Caf_Dom_2021',\n",
+       "       'Dep_Ts_Regimes_2021', 'Dep_Caf_2021'],\n",
+       "      dtype='object')"
+      ]
+     },
+     "execution_count": 11,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "prestations.columns"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 3,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "comparaison_metrop_dom = prestations[[\"En millions d'euros\",'Dep_Ts_Regimes_Metro_2021','Dep_Ts_Regimes_Dom_2021','Dep_Ts_Regimes_2021']].copy()\n",
+    "comparaison_metrop_dom.columns = ['nom','metropole','dom','france_entiere']\n",
+    "comparaison_metrop_dom['part_dom'] = comparaison_metrop_dom.dom / comparaison_metrop_dom.france_entiere\n",
+    "comparaison_metrop_dom = comparaison_metrop_dom.iloc[[1,2,3,4,5,9,10,11,19]]"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 23,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<style scoped>\n",
+       "    .dataframe tbody tr th:only-of-type {\n",
+       "        vertical-align: middle;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe tbody tr th {\n",
+       "        vertical-align: top;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe thead th {\n",
+       "        text-align: right;\n",
+       "    }\n",
+       "</style>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr style=\"text-align: right;\">\n",
+       "      <th></th>\n",
+       "      <th>nom</th>\n",
+       "      <th>metropole</th>\n",
+       "      <th>dom</th>\n",
+       "      <th>france_entiere</th>\n",
+       "      <th>part_dom</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>1</th>\n",
+       "      <td>Allocations familiales (AF)</td>\n",
+       "      <td>12131.740930</td>\n",
+       "      <td>528.228413</td>\n",
+       "      <td>12659.969340</td>\n",
+       "      <td>0.041724</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2</th>\n",
+       "      <td>Complément familial (CF)</td>\n",
+       "      <td>2271.825331</td>\n",
+       "      <td>88.924939</td>\n",
+       "      <td>2360.750270</td>\n",
+       "      <td>0.037668</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>3</th>\n",
+       "      <td>Allocation de rentrée scolaire (ARS)</td>\n",
+       "      <td>1945.299985</td>\n",
+       "      <td>101.926929</td>\n",
+       "      <td>2047.226915</td>\n",
+       "      <td>0.049788</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>4</th>\n",
+       "      <td>Allocation de soutien familial (ASF)</td>\n",
+       "      <td>1567.451734</td>\n",
+       "      <td>206.984701</td>\n",
+       "      <td>1774.436435</td>\n",
+       "      <td>0.116648</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>5</th>\n",
+       "      <td>Allocation d’éducation de l’enfant handicapé</td>\n",
+       "      <td>1165.679768</td>\n",
+       "      <td>53.954245</td>\n",
+       "      <td>1219.634013</td>\n",
+       "      <td>0.044238</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>9</th>\n",
+       "      <td>PAJE naissance adoption</td>\n",
+       "      <td>699.242865</td>\n",
+       "      <td>30.070908</td>\n",
+       "      <td>729.313773</td>\n",
+       "      <td>0.041232</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>10</th>\n",
+       "      <td>PAJE  naissance adoption de base (AB)</td>\n",
+       "      <td>2857.611244</td>\n",
+       "      <td>128.789330</td>\n",
+       "      <td>2986.400574</td>\n",
+       "      <td>0.043125</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>11</th>\n",
+       "      <td>PAJE complément (optionnel) libre choix activi...</td>\n",
+       "      <td>761.976684</td>\n",
+       "      <td>8.255074</td>\n",
+       "      <td>770.231757</td>\n",
+       "      <td>0.010718</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>19</th>\n",
+       "      <td>PAJE complément mode de garde (CMG)</td>\n",
+       "      <td>6237.270601</td>\n",
+       "      <td>120.318693</td>\n",
+       "      <td>6357.589294</td>\n",
+       "      <td>0.018925</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "                                                  nom     metropole  \\\n",
+       "1                         Allocations familiales (AF)  12131.740930   \n",
+       "2                            Complément familial (CF)   2271.825331   \n",
+       "3                Allocation de rentrée scolaire (ARS)   1945.299985   \n",
+       "4                Allocation de soutien familial (ASF)   1567.451734   \n",
+       "5       Allocation d’éducation de l’enfant handicapé    1165.679768   \n",
+       "9                             PAJE naissance adoption    699.242865   \n",
+       "10              PAJE  naissance adoption de base (AB)   2857.611244   \n",
+       "11  PAJE complément (optionnel) libre choix activi...    761.976684   \n",
+       "19                PAJE complément mode de garde (CMG)   6237.270601   \n",
+       "\n",
+       "           dom  france_entiere  part_dom  \n",
+       "1   528.228413    12659.969340  0.041724  \n",
+       "2    88.924939     2360.750270  0.037668  \n",
+       "3   101.926929     2047.226915  0.049788  \n",
+       "4   206.984701     1774.436435  0.116648  \n",
+       "5    53.954245     1219.634013  0.044238  \n",
+       "9    30.070908      729.313773  0.041232  \n",
+       "10  128.789330     2986.400574  0.043125  \n",
+       "11    8.255074      770.231757  0.010718  \n",
+       "19  120.318693     6357.589294  0.018925  "
+      ]
+     },
+     "execution_count": 23,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "comparaison_metrop_dom"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "--> A l'exception de l'ASF, les versements dans les DOM représentent moins de 5 % de chaque prestation familiale. Donc ça fait une extrapolation pour les DOM assez raisonnable."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 2,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "LeximpactErfsSurveyScenario : Using /home/cgl/.config/openfisca-survey-manager as config_files_directory\n",
+      "years_available=[2021] vs years=[2021]\n",
+      "Données du scénario : \n",
+      " {'input_data_table_by_entity_by_period': {2021: {'individu': 'individu_2021', 'famille': 'famille_2021', 'foyer_fiscal': 'foyer_fiscal_2021', 'menage': 'menage_2021'}}, 'survey': 'leximpact_2021', 'config_files_directory': '/home/cgl/.config/openfisca-survey-manager'}\n"
+     ]
+    }
+   ],
+   "source": [
+    "survey_scenario = PipelineErfsSurveyScenario(\n",
+    "    annee_donnees=2021,\n",
+    "    period = 2021,\n",
+    "    collection = \"leximpact\",\n",
+    ")"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 3,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<style scoped>\n",
+       "    .dataframe tbody tr th:only-of-type {\n",
+       "        vertical-align: middle;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe tbody tr th {\n",
+       "        vertical-align: top;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe thead th {\n",
+       "        text-align: right;\n",
+       "    }\n",
+       "</style>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr style=\"text-align: right;\">\n",
+       "      <th>age</th>\n",
+       "      <th>-1</th>\n",
+       "      <th>0</th>\n",
+       "      <th>1</th>\n",
+       "      <th>2</th>\n",
+       "      <th>3</th>\n",
+       "      <th>4</th>\n",
+       "      <th>5</th>\n",
+       "      <th>6</th>\n",
+       "      <th>7</th>\n",
+       "      <th>8</th>\n",
+       "      <th>9</th>\n",
+       "      <th>10</th>\n",
+       "      <th>11</th>\n",
+       "      <th>12</th>\n",
+       "      <th>13</th>\n",
+       "      <th>14</th>\n",
+       "      <th>15</th>\n",
+       "      <th>16</th>\n",
+       "      <th>17</th>\n",
+       "      <th>18</th>\n",
+       "      <th>19</th>\n",
+       "      <th>20</th>\n",
+       "      <th>21</th>\n",
+       "      <th>22</th>\n",
+       "      <th>23</th>\n",
+       "      <th>24</th>\n",
+       "      <th>25</th>\n",
+       "      <th>26</th>\n",
+       "      <th>27</th>\n",
+       "      <th>28</th>\n",
+       "      <th>29</th>\n",
+       "      <th>30</th>\n",
+       "      <th>31</th>\n",
+       "      <th>32</th>\n",
+       "      <th>33</th>\n",
+       "      <th>34</th>\n",
+       "      <th>35</th>\n",
+       "      <th>36</th>\n",
+       "      <th>37</th>\n",
+       "      <th>38</th>\n",
+       "      <th>39</th>\n",
+       "      <th>40</th>\n",
+       "      <th>41</th>\n",
+       "      <th>42</th>\n",
+       "      <th>43</th>\n",
+       "      <th>44</th>\n",
+       "      <th>45</th>\n",
+       "      <th>46</th>\n",
+       "      <th>47</th>\n",
+       "      <th>48</th>\n",
+       "      <th>49</th>\n",
+       "      <th>50</th>\n",
+       "      <th>51</th>\n",
+       "      <th>52</th>\n",
+       "      <th>53</th>\n",
+       "      <th>54</th>\n",
+       "      <th>55</th>\n",
+       "      <th>56</th>\n",
+       "      <th>57</th>\n",
+       "      <th>58</th>\n",
+       "      <th>59</th>\n",
+       "      <th>60</th>\n",
+       "      <th>61</th>\n",
+       "      <th>62</th>\n",
+       "      <th>63</th>\n",
+       "      <th>64</th>\n",
+       "      <th>65</th>\n",
+       "      <th>66</th>\n",
+       "      <th>67</th>\n",
+       "      <th>68</th>\n",
+       "      <th>69</th>\n",
+       "      <th>70</th>\n",
+       "      <th>71</th>\n",
+       "      <th>72</th>\n",
+       "      <th>73</th>\n",
+       "      <th>74</th>\n",
+       "      <th>75</th>\n",
+       "      <th>76</th>\n",
+       "      <th>77</th>\n",
+       "      <th>78</th>\n",
+       "      <th>79</th>\n",
+       "      <th>80</th>\n",
+       "      <th>81</th>\n",
+       "      <th>82</th>\n",
+       "      <th>83</th>\n",
+       "      <th>84</th>\n",
+       "      <th>85</th>\n",
+       "      <th>86</th>\n",
+       "      <th>87</th>\n",
+       "      <th>88</th>\n",
+       "      <th>89</th>\n",
+       "      <th>90</th>\n",
+       "      <th>91</th>\n",
+       "      <th>92</th>\n",
+       "      <th>93</th>\n",
+       "      <th>94</th>\n",
+       "      <th>95</th>\n",
+       "      <th>96</th>\n",
+       "      <th>97</th>\n",
+       "      <th>98</th>\n",
+       "      <th>99</th>\n",
+       "      <th>100</th>\n",
+       "      <th>101</th>\n",
+       "      <th>102</th>\n",
+       "      <th>103</th>\n",
+       "      <th>104</th>\n",
+       "      <th>106</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>weight_individus</th>\n",
+       "      <td>11813.797852</td>\n",
+       "      <td>595541.125</td>\n",
+       "      <td>747895.875</td>\n",
+       "      <td>706839.125</td>\n",
+       "      <td>764462.3125</td>\n",
+       "      <td>767905.9375</td>\n",
+       "      <td>740570.3125</td>\n",
+       "      <td>809808.1875</td>\n",
+       "      <td>802674.6875</td>\n",
+       "      <td>785522.0625</td>\n",
+       "      <td>870029.4375</td>\n",
+       "      <td>825446.6875</td>\n",
+       "      <td>804788.125</td>\n",
+       "      <td>841076.0625</td>\n",
+       "      <td>846182.625</td>\n",
+       "      <td>817947.1875</td>\n",
+       "      <td>782874.75</td>\n",
+       "      <td>809716.6875</td>\n",
+       "      <td>768674.0625</td>\n",
+       "      <td>802181.0</td>\n",
+       "      <td>783870.125</td>\n",
+       "      <td>765311.9375</td>\n",
+       "      <td>752411.25</td>\n",
+       "      <td>727639.5</td>\n",
+       "      <td>688626.8125</td>\n",
+       "      <td>629202.875</td>\n",
+       "      <td>632790.25</td>\n",
+       "      <td>687917.9375</td>\n",
+       "      <td>714123.5</td>\n",
+       "      <td>769003.875</td>\n",
+       "      <td>799839.375</td>\n",
+       "      <td>717439.375</td>\n",
+       "      <td>774477.4375</td>\n",
+       "      <td>785195.3125</td>\n",
+       "      <td>805350.125</td>\n",
+       "      <td>842627.4375</td>\n",
+       "      <td>777170.9375</td>\n",
+       "      <td>809260.25</td>\n",
+       "      <td>839693.625</td>\n",
+       "      <td>807203.125</td>\n",
+       "      <td>860324.0</td>\n",
+       "      <td>812370.0625</td>\n",
+       "      <td>791403.8125</td>\n",
+       "      <td>777163.9375</td>\n",
+       "      <td>801891.4375</td>\n",
+       "      <td>756334.4375</td>\n",
+       "      <td>852508.8125</td>\n",
+       "      <td>890294.875</td>\n",
+       "      <td>866621.0</td>\n",
+       "      <td>919736.875</td>\n",
+       "      <td>839377.875</td>\n",
+       "      <td>827294.625</td>\n",
+       "      <td>796370.625</td>\n",
+       "      <td>834541.75</td>\n",
+       "      <td>913440.875</td>\n",
+       "      <td>900558.3125</td>\n",
+       "      <td>858038.6875</td>\n",
+       "      <td>900795.5625</td>\n",
+       "      <td>795671.875</td>\n",
+       "      <td>831813.0625</td>\n",
+       "      <td>811629.0625</td>\n",
+       "      <td>826684.375</td>\n",
+       "      <td>784713.6875</td>\n",
+       "      <td>801806.0</td>\n",
+       "      <td>787167.9375</td>\n",
+       "      <td>758968.6875</td>\n",
+       "      <td>768000.4375</td>\n",
+       "      <td>760722.125</td>\n",
+       "      <td>738066.8125</td>\n",
+       "      <td>749705.625</td>\n",
+       "      <td>758123.125</td>\n",
+       "      <td>729365.8125</td>\n",
+       "      <td>712206.125</td>\n",
+       "      <td>724757.9375</td>\n",
+       "      <td>679096.3125</td>\n",
+       "      <td>476587.71875</td>\n",
+       "      <td>493704.15625</td>\n",
+       "      <td>430994.5</td>\n",
+       "      <td>448851.9375</td>\n",
+       "      <td>352450.34375</td>\n",
+       "      <td>378944.40625</td>\n",
+       "      <td>397003.9375</td>\n",
+       "      <td>368305.96875</td>\n",
+       "      <td>340749.15625</td>\n",
+       "      <td>319667.3125</td>\n",
+       "      <td>302771.0625</td>\n",
+       "      <td>284818.09375</td>\n",
+       "      <td>261440.859375</td>\n",
+       "      <td>223485.890625</td>\n",
+       "      <td>211814.859375</td>\n",
+       "      <td>186309.125</td>\n",
+       "      <td>139709.46875</td>\n",
+       "      <td>128412.46875</td>\n",
+       "      <td>75231.273438</td>\n",
+       "      <td>70013.09375</td>\n",
+       "      <td>57901.6875</td>\n",
+       "      <td>45743.027344</td>\n",
+       "      <td>28557.216797</td>\n",
+       "      <td>18364.171875</td>\n",
+       "      <td>9658.157227</td>\n",
+       "      <td>9413.837891</td>\n",
+       "      <td>5723.911133</td>\n",
+       "      <td>3112.810059</td>\n",
+       "      <td>1125.075806</td>\n",
+       "      <td>466.519348</td>\n",
+       "      <td>611.301208</td>\n",
+       "      <td>2054.092773</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "age                       -1           0           1           2    \\\n",
+       "weight_individus  11813.797852  595541.125  747895.875  706839.125   \n",
+       "\n",
+       "age                       3            4            5            6    \\\n",
+       "weight_individus  764462.3125  767905.9375  740570.3125  809808.1875   \n",
+       "\n",
+       "age                       7            8            9            10   \\\n",
+       "weight_individus  802674.6875  785522.0625  870029.4375  825446.6875   \n",
+       "\n",
+       "age                      11           12          13           14         15   \\\n",
+       "weight_individus  804788.125  841076.0625  846182.625  817947.1875  782874.75   \n",
+       "\n",
+       "age                       16           17        18          19           20   \\\n",
+       "weight_individus  809716.6875  768674.0625  802181.0  783870.125  765311.9375   \n",
+       "\n",
+       "age                     21        22           23          24         25   \\\n",
+       "weight_individus  752411.25  727639.5  688626.8125  629202.875  632790.25   \n",
+       "\n",
+       "age                       26        27          28          29          30   \\\n",
+       "weight_individus  687917.9375  714123.5  769003.875  799839.375  717439.375   \n",
+       "\n",
+       "age                       31           32          33           34   \\\n",
+       "weight_individus  774477.4375  785195.3125  805350.125  842627.4375   \n",
+       "\n",
+       "age                       35         36          37          38        39   \\\n",
+       "weight_individus  777170.9375  809260.25  839693.625  807203.125  860324.0   \n",
+       "\n",
+       "age                       40           41           42           43   \\\n",
+       "weight_individus  812370.0625  791403.8125  777163.9375  801891.4375   \n",
+       "\n",
+       "age                       44           45          46        47          48   \\\n",
+       "weight_individus  756334.4375  852508.8125  890294.875  866621.0  919736.875   \n",
+       "\n",
+       "age                      49          50          51         52          53   \\\n",
+       "weight_individus  839377.875  827294.625  796370.625  834541.75  913440.875   \n",
+       "\n",
+       "age                       54           55           56          57   \\\n",
+       "weight_individus  900558.3125  858038.6875  900795.5625  795671.875   \n",
+       "\n",
+       "age                       58           59          60           61        62   \\\n",
+       "weight_individus  831813.0625  811629.0625  826684.375  784713.6875  801806.0   \n",
+       "\n",
+       "age                       63           64           65          66   \\\n",
+       "weight_individus  787167.9375  758968.6875  768000.4375  760722.125   \n",
+       "\n",
+       "age                       67          68          69           70   \\\n",
+       "weight_individus  738066.8125  749705.625  758123.125  729365.8125   \n",
+       "\n",
+       "age                      71           72           73            74   \\\n",
+       "weight_individus  712206.125  724757.9375  679096.3125  476587.71875   \n",
+       "\n",
+       "age                        75        76           77            78   \\\n",
+       "weight_individus  493704.15625  430994.5  448851.9375  352450.34375   \n",
+       "\n",
+       "age                        79           80            81            82   \\\n",
+       "weight_individus  378944.40625  397003.9375  368305.96875  340749.15625   \n",
+       "\n",
+       "age                       83           84            85             86   \\\n",
+       "weight_individus  319667.3125  302771.0625  284818.09375  261440.859375   \n",
+       "\n",
+       "age                         87             88          89            90   \\\n",
+       "weight_individus  223485.890625  211814.859375  186309.125  139709.46875   \n",
+       "\n",
+       "age                        91            92           93          94   \\\n",
+       "weight_individus  128412.46875  75231.273438  70013.09375  57901.6875   \n",
+       "\n",
+       "age                        95            96            97           98   \\\n",
+       "weight_individus  45743.027344  28557.216797  18364.171875  9658.157227   \n",
+       "\n",
+       "age                       99           100          101          102  \\\n",
+       "weight_individus  9413.837891  5723.911133  3112.810059  1125.075806   \n",
+       "\n",
+       "age                      103         104          106  \n",
+       "weight_individus  466.519348  611.301208  2054.092773  "
+      ]
+     },
+     "execution_count": 3,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "simulation = survey_scenario.simulations['baseline']\n",
+    "simulation.compute_pivot_table(columns=['age'],period=\"2021-12\",aggfunc = \"count\")"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 5,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "607354.922852"
+      ]
+     },
+     "execution_count": 5,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "595541.125 + 11813.797852"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": []
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 4,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "0.38128611886322833"
+      ]
+     },
+     "execution_count": 4,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "simulation.compute_aggregate(\"paje_naissance\",period=2021)/1e9"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 5,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "from leximpact_survey_scenario.scenario_tools.input_variables_list import leximpact_used_as_input_variables"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 5,
+   "metadata": {},
+   "outputs": [
+    {
+     "ename": "NameError",
+     "evalue": "name 'leximpact_used_as_input_variables' is not defined",
+     "output_type": "error",
+     "traceback": [
+      "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
+      "\u001b[0;31mNameError\u001b[0m                                 Traceback (most recent call last)",
+      "\u001b[1;32m/home/cgl/leximpact/leximpact-prepare-data/notebooks/memos/_memo_prestations_familiales.ipynb Cell 12\u001b[0m line \u001b[0;36m1\n\u001b[0;32m----> <a href='vscode-notebook-cell:/home/cgl/leximpact/leximpact-prepare-data/notebooks/memos/_memo_prestations_familiales.ipynb#X14sZmlsZQ%3D%3D?line=0'>1</a>\u001b[0m temp_tot \u001b[39m=\u001b[39m simulation\u001b[39m.\u001b[39mcreate_data_frame_by_entity(leximpact_used_as_input_variables, merge \u001b[39m=\u001b[39m \u001b[39mTrue\u001b[39;00m, period \u001b[39m=\u001b[39m \u001b[39m2021\u001b[39m)\n",
+      "\u001b[0;31mNameError\u001b[0m: name 'leximpact_used_as_input_variables' is not defined"
+     ]
+    }
+   ],
+   "source": [
+    "temp_tot = simulation.create_data_frame_by_entity(leximpact_used_as_input_variables, merge = True, period = 2021)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 8,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "temp = simulation.create_data_frame_by_entity([\"age\", \"date_naissance\",\"paje_naissance\", \"af_nbenf\",\"prestations_familiales_base_ressources\", \"en_couple\",\"biactivite\"], period=\"2023-12\", merge = True)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 5,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "test = temp.loc[temp.age < 1]"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "/tmp/ipykernel_13297/2433895206.py:1: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame.\n",
+      "Try using .loc[row_indexer,col_indexer] = value instead\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  test.af_nbenf = test.af_nbenf / 12\n",
+      "/tmp/ipykernel_13297/2433895206.py:2: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame.\n",
+      "Try using .loc[row_indexer,col_indexer] = value instead\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  test.paje_naissance = test.paje_naissance/12\n",
+      "/tmp/ipykernel_13297/2433895206.py:3: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame.\n",
+      "Try using .loc[row_indexer,col_indexer] = value instead\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  test.prestations_familiales_base_ressources = test.prestations_familiales_base_ressources/12\n"
+     ]
+    }
+   ],
+   "source": [
+    "test.af_nbenf = test.af_nbenf / 12\n",
+    "test.paje_naissance = test.paje_naissance/12\n",
+    "test.prestations_familiales_base_ressources = test.prestations_familiales_base_ressources/12"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 6,
+   "metadata": {},
+   "outputs": [
+    {
+     "ename": "NameError",
+     "evalue": "name 'temp_tot' is not defined",
+     "output_type": "error",
+     "traceback": [
+      "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
+      "\u001b[0;31mNameError\u001b[0m                                 Traceback (most recent call last)",
+      "\u001b[1;32m/home/cgl/leximpact/leximpact-prepare-data/notebooks/memos/_memo_prestations_familiales.ipynb Cell 16\u001b[0m line \u001b[0;36m1\n\u001b[0;32m----> <a href='vscode-notebook-cell:/home/cgl/leximpact/leximpact-prepare-data/notebooks/memos/_memo_prestations_familiales.ipynb#X20sZmlsZQ%3D%3D?line=0'>1</a>\u001b[0m temp_tot\u001b[39m.\u001b[39mloc[temp_tot\u001b[39m.\u001b[39mfamille_id \u001b[39m==\u001b[39m \u001b[39m48986\u001b[39m]\n",
+      "\u001b[0;31mNameError\u001b[0m: name 'temp_tot' is not defined"
+     ]
+    }
+   ],
+   "source": [
+    "temp_tot.loc[temp_tot.famille_id == 48986]"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 9,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<style scoped>\n",
+       "    .dataframe tbody tr th:only-of-type {\n",
+       "        vertical-align: middle;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe tbody tr th {\n",
+       "        vertical-align: top;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe thead th {\n",
+       "        text-align: right;\n",
+       "    }\n",
+       "</style>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr style=\"text-align: right;\">\n",
+       "      <th></th>\n",
+       "      <th>person_id</th>\n",
+       "      <th>date_naissance</th>\n",
+       "      <th>age</th>\n",
+       "      <th>famille_id</th>\n",
+       "      <th>famille_role</th>\n",
+       "      <th>famille_position</th>\n",
+       "      <th>foyer_fiscal_id</th>\n",
+       "      <th>foyer_fiscal_role</th>\n",
+       "      <th>foyer_fiscal_position</th>\n",
+       "      <th>menage_id</th>\n",
+       "      <th>menage_role</th>\n",
+       "      <th>menage_position</th>\n",
+       "      <th>idfam</th>\n",
+       "      <th>af_nbenf</th>\n",
+       "      <th>en_couple</th>\n",
+       "      <th>prestations_familiales_base_ressources</th>\n",
+       "      <th>paje_naissance</th>\n",
+       "      <th>biactivite</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>98623</th>\n",
+       "      <td>98623</td>\n",
+       "      <td>1986-11-30</td>\n",
+       "      <td>37</td>\n",
+       "      <td>48986</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0</td>\n",
+       "      <td>48986</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0</td>\n",
+       "      <td>45007</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0</td>\n",
+       "      <td>48986</td>\n",
+       "      <td>2</td>\n",
+       "      <td>True</td>\n",
+       "      <td>24580.335938</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>False</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>98624</th>\n",
+       "      <td>98624</td>\n",
+       "      <td>1998-10-07</td>\n",
+       "      <td>25</td>\n",
+       "      <td>48986</td>\n",
+       "      <td>1</td>\n",
+       "      <td>1</td>\n",
+       "      <td>48986</td>\n",
+       "      <td>1</td>\n",
+       "      <td>1</td>\n",
+       "      <td>45007</td>\n",
+       "      <td>1</td>\n",
+       "      <td>1</td>\n",
+       "      <td>48986</td>\n",
+       "      <td>2</td>\n",
+       "      <td>True</td>\n",
+       "      <td>24580.335938</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>False</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>98625</th>\n",
+       "      <td>98625</td>\n",
+       "      <td>2022-11-21</td>\n",
+       "      <td>1</td>\n",
+       "      <td>48986</td>\n",
+       "      <td>2</td>\n",
+       "      <td>2</td>\n",
+       "      <td>48986</td>\n",
+       "      <td>2</td>\n",
+       "      <td>2</td>\n",
+       "      <td>45007</td>\n",
+       "      <td>2</td>\n",
+       "      <td>2</td>\n",
+       "      <td>48986</td>\n",
+       "      <td>2</td>\n",
+       "      <td>True</td>\n",
+       "      <td>24580.335938</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>False</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>98626</th>\n",
+       "      <td>98626</td>\n",
+       "      <td>2023-11-25</td>\n",
+       "      <td>0</td>\n",
+       "      <td>48986</td>\n",
+       "      <td>2</td>\n",
+       "      <td>3</td>\n",
+       "      <td>48986</td>\n",
+       "      <td>2</td>\n",
+       "      <td>3</td>\n",
+       "      <td>45007</td>\n",
+       "      <td>2</td>\n",
+       "      <td>3</td>\n",
+       "      <td>48986</td>\n",
+       "      <td>2</td>\n",
+       "      <td>True</td>\n",
+       "      <td>24580.335938</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>False</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "       person_id date_naissance  age  famille_id  famille_role  \\\n",
+       "98623      98623     1986-11-30   37       48986             0   \n",
+       "98624      98624     1998-10-07   25       48986             1   \n",
+       "98625      98625     2022-11-21    1       48986             2   \n",
+       "98626      98626     2023-11-25    0       48986             2   \n",
+       "\n",
+       "       famille_position  foyer_fiscal_id  foyer_fiscal_role  \\\n",
+       "98623                 0            48986                  0   \n",
+       "98624                 1            48986                  1   \n",
+       "98625                 2            48986                  2   \n",
+       "98626                 3            48986                  2   \n",
+       "\n",
+       "       foyer_fiscal_position  menage_id  menage_role  menage_position  idfam  \\\n",
+       "98623                      0      45007            0                0  48986   \n",
+       "98624                      1      45007            1                1  48986   \n",
+       "98625                      2      45007            2                2  48986   \n",
+       "98626                      3      45007            2                3  48986   \n",
+       "\n",
+       "       af_nbenf  en_couple  prestations_familiales_base_ressources  \\\n",
+       "98623         2       True                            24580.335938   \n",
+       "98624         2       True                            24580.335938   \n",
+       "98625         2       True                            24580.335938   \n",
+       "98626         2       True                            24580.335938   \n",
+       "\n",
+       "       paje_naissance  biactivite  \n",
+       "98623             0.0       False  \n",
+       "98624             0.0       False  \n",
+       "98625             0.0       False  \n",
+       "98626             0.0       False  "
+      ]
+     },
+     "execution_count": 9,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "temp.loc[temp.famille_id == 48986]"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": []
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 32,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "1.9327020048976027"
+      ]
+     },
+     "execution_count": 32,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "simulation.compute_aggregate(\"cf\",period=2021)/1e9"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## PAJE - prime à la naissance :\n",
+    "- versée au 7e mois de grossesse\n",
+    "- son montant est 2.2975 fois la BMAF\n",
+    "- le montant est doublé en cas d'adoption mais le nombre d'adoption est très faible (max quelques milliers) donc ne devrait jouer que de quelques pourcents dans le montant total de la prestation"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "**ATTENTION** pour les prestations familiales, ou pour toutes les prestations d'ailleurs, si on cale sur la masse on va avoir des montants supérieurs aux montants qui sont des forfaits donc c'est quand même une grosse limite... A voir comment on deal avec ça, on ne peut pas faire des montants moyens par exemple.\n",
+    "Peut être que c'est l'occasion de reprendre le calage sur marge !!"
+   ]
+  }
+ ],
+ "metadata": {
+  "kernelspec": {
+   "display_name": "leximpact-prepare-data-kernel",
+   "language": "python",
+   "name": "leximpact-prepare-data-kernel"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.10.12"
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}
diff --git a/notebooks/memos/data/README_cnaf_prestations_2021 b/notebooks/memos/data/README_cnaf_prestations_2021
new file mode 100644
index 0000000000000000000000000000000000000000..f8633489b6169485ca7dbea3ddf595e793d23d52
--- /dev/null
+++ b/notebooks/memos/data/README_cnaf_prestations_2021
@@ -0,0 +1,43 @@
+Descriptif des données des dépenses tous régimes de prestations familiales et sociales gérées par la branche Famille
+
+Libellés des colonnes :
+
+Prestations			Prestations versées par la branche Famille (Allocations familiales (AF), Allocation logement familiale (ALF) etc.)				
+Dep_Ts_Regimes_Metro_20XX	Dépenses tous régimes, au titre de l'année 20XX, France métropolitaine
+Dep_Caf_Metro_20XX		Dépenses régime général (CAF), au titre de l'année 20XX, France métropolitaine
+Dep_Ts_Regimes_Dom_20XX		Dépenses tous régimes, au titre de l'année 20XX, DOM
+Dep_Caf_Dom_20XX		Dépenses régime général (CAF), au titre de l'année 20XX, DOM
+Dep_Ts_Regimes_20XX		Dépenses tous régimes, au titre de l'année 20XX, France entière
+Dep_Caf_20XX			Dépenses régime général (CAF), au titre de l'année 20XX, France entière
+
+
+Remarques :
+
+Les dépenses sont exprimées en millions d’Euros.
+
+La dépense est indiquée pour chacune des prestations familiales (petite enfance et enfance jeunesse) et sociales (aides au logement, revenu de solidarité active). Elle est déclinée selon les catégories suivantes :
+-	Tous régimes France entière
+-	Tous régimes métropole
+-	Tous régimes DOM
+-	Régime général (CAF), France entière
+-	Régime général (CAF), métropole
+-	Régime général (CAF), DOM
+
+Le champ tous régimes agrège les données du régime général (CAF), du régime agricole (salariés et exploitants) et des régimes spéciaux (SNCF et RATP jusqu’en 2014, EDF jusqu’en 2012). 
+Les dépenses de RSA de plusieurs départements ont été recentralisées dans les comptes de l'Etat. Il s'agit de la Guyane et de Mayotte à partir de 2019, de la Réunion à compter de 2020, ainsi que de la Seine-Saint-Denis et des Pyrénées Orientales à compter respectivement de janvier 2021 et juillet 2022.
+
+Pour l'année 2021, la répartition des dépenses de prime inflation entre Métropole et Dom se fait à l'aide d'une clé de passage.
+
+Les caisses des Dom ont la particularité de verser les prestations aux allocataires de l'ensemble des régimes.
+
+Le foyer allocataire est l’entité administrative à laquelle les Caf  et les autres régimes versent au moins une prestation. Il est composé de l’allocataire (personne qui perçoit au moins une 
+prestation au regard de sa situation familiale et/ou ses ressources), de son conjoint/concubin/pacsé éventuel, des enfants à charge et autres personnes à charge au sens de 
+la réglementation en vigueur. Un foyer allocataire peut donc comporter une ou plusieurs personnes. 
+
+Le droit versable signifie que le foyer allocataire remplit toutes les conditions pour être effectivement payé au titre du mois d’observation. En particulier ne sont pas 
+inclus dans ce périmètre les bénéficiaires qui n’ont pas fourni l’intégralité de leurs pièces justificatives, ou ceux dont le montant de la prestation est inférieur au 
+seuil de versement.
+
+Vous pouvez trouver plus d'informations sur le site de la branche famille: http://www.caf.fr/
+et sur le Cahier des données sociales : http://www.caf.fr/etudes-et-statistiques/publications/cahier-des-donnees-sociales
+
diff --git a/pyproject.toml b/pyproject.toml
index 4d9ecd004dfe867b1af31e248c28debcd02cc92a..b0fe4348d073b2b36b229703355c6fee8114d17b 100644
--- a/pyproject.toml
+++ b/pyproject.toml
@@ -28,8 +28,9 @@ diagrams = { version = "^0.20.0", optional = true}
 python-dotenv = {version = "^0.19.2", optional = true}  # for vaex
 vaex-server = "^0.8.1"
 vaex-jupyter = "^0.7.0"
-leximpact-survey-scenario = "^1.0.1"
-#leximpact-survey-scenario =  {git = "https://git.leximpact.dev/leximpact/simulateur-socio-fiscal/budget/leximpact-survey-scenario.git", rev="master"}
+# leximpact-survey-scenario = "0.1.2"
+#leximpact-survey-scenario =  {git = "https://git.leximpact.dev/leximpact/simulateur-socio-fiscal/budget/leximpact-survey-scenario.git", rev="refacto-scenario"}
+leximpact-survey-scenario =  {git = "https://git.leximpact.dev/leximpact/simulateur-socio-fiscal/budget/leximpact-survey-scenario.git", rev="2-adaptation-prestations-familiales"}
 leximpact-aggregates = "^0.0.28"
 multipledispatch = "^0.6.0"
 nbdev = "^2.2.10"
diff --git a/tests/aggregates.ipynb b/tests/aggregates.ipynb
index 2b6260fe67cb816d7471f992482b90df6e4b2d45..c59c5e71342898ec0fecd6c584a6531aa82ef12d 100644
--- a/tests/aggregates.ipynb
+++ b/tests/aggregates.ipynb
@@ -15,7 +15,8 @@
       "plus_values_prelevement_forfaitaire_unique_ir has been updated in leximpact-survey-scenario\n",
       "rfr_plus_values_hors_rni has been updated in leximpact-survey-scenario\n",
       "rpns_imposables has been updated in leximpact-survey-scenario\n",
-      "rpns_autres_revenus has been updated in leximpact-survey-scenario\n"
+      "rpns_autres_revenus has been updated in leximpact-survey-scenario\n",
+      "paje_naissance has been updated in leximpact-survey-scenario\n"
      ]
     }
    ],
@@ -25,7 +26,7 @@
     "from openfisca_france_data.aggregates import FranceAggregates\n",
     "from leximpact_common_python_libraries.config import Configuration\n",
     "\n",
-    "annee_de_calcul = 2021\n",
+    "annee_de_calcul = 2023\n",
     "annee_donnees = 2021\n",
     "source_cible = \"france_entiere\"  # \"ines\"\n",
     "\n",
@@ -35,7 +36,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 2,
+   "execution_count": 3,
    "metadata": {
     "tags": []
    },
@@ -45,15 +46,32 @@
      "output_type": "stream",
      "text": [
       "LeximpactErfsSurveyScenario : Using /home/cgl/.config/openfisca-survey-manager as config_files_directory\n",
-      "years_available=[2021] vs years=[2021]\n",
+      "years_available=[2021] vs years=[2023]\n",
+      "WARNING: no data for 2023, will took 2021\n",
       "Données du scénario : \n",
-      " {'input_data_table_by_entity_by_period': {2021: {'individu': 'individu_2021', 'famille': 'famille_2021', 'foyer_fiscal': 'foyer_fiscal_2021', 'menage': 'menage_2021'}}, 'survey': 'leximpact_2021', 'config_files_directory': '/home/cgl/.config/openfisca-survey-manager'}\n"
+      " {'input_data_table_by_entity_by_period': {2023: {'individu': 'individu_2021', 'famille': 'famille_2021', 'foyer_fiscal': 'foyer_fiscal_2021', 'menage': 'menage_2021'}}, 'survey': 'leximpact_2021', 'config_files_directory': '/home/cgl/.config/openfisca-survey-manager'}\n"
      ]
     },
     {
      "name": "stderr",
      "output_type": "stream",
      "text": [
+      "/home/cgl/leximpact/leximpact-prepare-data/.venv/lib/python3.10/site-packages/openfisca_france/model/prelevements_obligatoires/prelevements_sociaux/cotisations_sociales/travail_non_salarie.py:199: RuntimeWarning:\n",
+      "\n",
+      "divide by zero encountered in divide\n",
+      "\n",
+      "/home/cgl/leximpact/leximpact-prepare-data/.venv/lib/python3.10/site-packages/openfisca_france/model/prelevements_obligatoires/prelevements_sociaux/cotisations_sociales/travail_non_salarie.py:199: RuntimeWarning:\n",
+      "\n",
+      "invalid value encountered in multiply\n",
+      "\n",
+      "/home/cgl/leximpact/leximpact-prepare-data/.venv/lib/python3.10/site-packages/openfisca_france/model/prelevements_obligatoires/prelevements_sociaux/cotisations_sociales/travail_non_salarie.py:199: RuntimeWarning:\n",
+      "\n",
+      "divide by zero encountered in divide\n",
+      "\n",
+      "/home/cgl/leximpact/leximpact-prepare-data/.venv/lib/python3.10/site-packages/openfisca_france/model/prelevements_obligatoires/prelevements_sociaux/cotisations_sociales/travail_non_salarie.py:199: RuntimeWarning:\n",
+      "\n",
+      "invalid value encountered in multiply\n",
+      "\n",
       "/home/cgl/leximpact/leximpact-prepare-data/.venv/lib/python3.10/site-packages/openfisca_france/model/prelevements_obligatoires/prelevements_sociaux/cotisations_sociales/travail_non_salarie.py:199: RuntimeWarning:\n",
       "\n",
       "divide by zero encountered in divide\n",
@@ -131,24 +149,27 @@
      "output_type": "stream",
      "text": [
       "LeximpactErfsSurveyScenario : Using /home/cgl/.config/openfisca-survey-manager as config_files_directory\n",
-      "years_available=[2021] vs years=[2021]\n",
+      "years_available=[2023] vs years=[2023]\n",
       "Données du scénario : \n",
-      " {'input_data_table_by_entity_by_period': {2021: {'individu': 'individu_2021', 'famille': 'famille_2021', 'foyer_fiscal': 'foyer_fiscal_2021', 'menage': 'menage_2021'}}, 'survey': 'leximpact_2021', 'config_files_directory': '/home/cgl/.config/openfisca-survey-manager'}\n"
+      " {'input_data_table_by_entity_by_period': {2023: {'individu': 'individu_2023', 'famille': 'famille_2023', 'foyer_fiscal': 'foyer_fiscal_2023', 'menage': 'menage_2023'}}, 'survey': 'leximpact_2023', 'config_files_directory': '/home/cgl/.config/openfisca-survey-manager'}\n"
      ]
     },
     {
-     "ename": "AttributeError",
-     "evalue": "'PipelineErfsSurveyScenario' object has no attribute 'tax_benefits_systems'",
+     "ename": "FileNotFoundError",
+     "evalue": "[Errno 2] No such file or directory: '/home/cgl/leximpact/leximpact-aggregates/aggregates/POTE/distribution_100/2023/assiette_csg_plus_values.yaml'",
      "output_type": "error",
      "traceback": [
       "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
-      "\u001b[0;31mAttributeError\u001b[0m                            Traceback (most recent call last)",
+      "\u001b[0;31mFileNotFoundError\u001b[0m                         Traceback (most recent call last)",
       "\u001b[1;32m/home/cgl/leximpact/leximpact-prepare-data/tests/aggregates.ipynb Cell 3\u001b[0m line \u001b[0;36m2\n\u001b[1;32m      <a href='vscode-notebook-cell:/home/cgl/leximpact/leximpact-prepare-data/tests/aggregates.ipynb#W2sZmlsZQ%3D%3D?line=0'>1</a>\u001b[0m target_variables \u001b[39m=\u001b[39m [\n\u001b[1;32m      <a href='vscode-notebook-cell:/home/cgl/leximpact/leximpact-prepare-data/tests/aggregates.ipynb#W2sZmlsZQ%3D%3D?line=1'>2</a>\u001b[0m     \u001b[39m\"\u001b[39m\u001b[39massiette_csg_plus_values\u001b[39m\u001b[39m\"\u001b[39m,\n\u001b[1;32m      <a href='vscode-notebook-cell:/home/cgl/leximpact/leximpact-prepare-data/tests/aggregates.ipynb#W2sZmlsZQ%3D%3D?line=2'>3</a>\u001b[0m     \u001b[39m\"\u001b[39m\u001b[39massiette_csg_revenus_capital\u001b[39m\u001b[39m\"\u001b[39m,\n\u001b[0;32m   (...)\u001b[0m\n\u001b[1;32m     <a href='vscode-notebook-cell:/home/cgl/leximpact/leximpact-prepare-data/tests/aggregates.ipynb#W2sZmlsZQ%3D%3D?line=17'>18</a>\u001b[0m     \u001b[39m\"\u001b[39m\u001b[39mrpns_imposables\u001b[39m\u001b[39m\"\u001b[39m,\n\u001b[1;32m     <a href='vscode-notebook-cell:/home/cgl/leximpact/leximpact-prepare-data/tests/aggregates.ipynb#W2sZmlsZQ%3D%3D?line=18'>19</a>\u001b[0m ]\n\u001b[1;32m     <a href='vscode-notebook-cell:/home/cgl/leximpact/leximpact-prepare-data/tests/aggregates.ipynb#W2sZmlsZQ%3D%3D?line=20'>21</a>\u001b[0m comparator \u001b[39m=\u001b[39m LeximpactErfsComparator(\n\u001b[1;32m     <a href='vscode-notebook-cell:/home/cgl/leximpact/leximpact-prepare-data/tests/aggregates.ipynb#W2sZmlsZQ%3D%3D?line=21'>22</a>\u001b[0m     period\u001b[39m=\u001b[39mannee_de_calcul, annee_donnees\u001b[39m=\u001b[39mannee_de_calcul, copules_comparaison\u001b[39m=\u001b[39m\u001b[39mFalse\u001b[39;00m\n\u001b[1;32m     <a href='vscode-notebook-cell:/home/cgl/leximpact/leximpact-prepare-data/tests/aggregates.ipynb#W2sZmlsZQ%3D%3D?line=22'>23</a>\u001b[0m )\n\u001b[0;32m---> <a href='vscode-notebook-cell:/home/cgl/leximpact/leximpact-prepare-data/tests/aggregates.ipynb#W2sZmlsZQ%3D%3D?line=23'>24</a>\u001b[0m comparator\u001b[39m.\u001b[39;49mcompare(\n\u001b[1;32m     <a href='vscode-notebook-cell:/home/cgl/leximpact/leximpact-prepare-data/tests/aggregates.ipynb#W2sZmlsZQ%3D%3D?line=24'>25</a>\u001b[0m     browse\u001b[39m=\u001b[39;49m\u001b[39mFalse\u001b[39;49;00m,\n\u001b[1;32m     <a href='vscode-notebook-cell:/home/cgl/leximpact/leximpact-prepare-data/tests/aggregates.ipynb#W2sZmlsZQ%3D%3D?line=25'>26</a>\u001b[0m     load\u001b[39m=\u001b[39;49m\u001b[39mFalse\u001b[39;49;00m,\n\u001b[1;32m     <a href='vscode-notebook-cell:/home/cgl/leximpact/leximpact-prepare-data/tests/aggregates.ipynb#W2sZmlsZQ%3D%3D?line=26'>27</a>\u001b[0m     verbose\u001b[39m=\u001b[39;49m\u001b[39mFalse\u001b[39;49;00m,\n\u001b[1;32m     <a href='vscode-notebook-cell:/home/cgl/leximpact/leximpact-prepare-data/tests/aggregates.ipynb#W2sZmlsZQ%3D%3D?line=27'>28</a>\u001b[0m     debug\u001b[39m=\u001b[39;49m\u001b[39mFalse\u001b[39;49;00m,\n\u001b[1;32m     <a href='vscode-notebook-cell:/home/cgl/leximpact/leximpact-prepare-data/tests/aggregates.ipynb#W2sZmlsZQ%3D%3D?line=28'>29</a>\u001b[0m     target_variables\u001b[39m=\u001b[39;49mtarget_variables,\n\u001b[1;32m     <a href='vscode-notebook-cell:/home/cgl/leximpact/leximpact-prepare-data/tests/aggregates.ipynb#W2sZmlsZQ%3D%3D?line=29'>30</a>\u001b[0m     period\u001b[39m=\u001b[39;49m\u001b[39mNone\u001b[39;49;00m,\n\u001b[1;32m     <a href='vscode-notebook-cell:/home/cgl/leximpact/leximpact-prepare-data/tests/aggregates.ipynb#W2sZmlsZQ%3D%3D?line=30'>31</a>\u001b[0m     rebuild\u001b[39m=\u001b[39;49m\u001b[39mTrue\u001b[39;49;00m,\n\u001b[1;32m     <a href='vscode-notebook-cell:/home/cgl/leximpact/leximpact-prepare-data/tests/aggregates.ipynb#W2sZmlsZQ%3D%3D?line=31'>32</a>\u001b[0m     summary\u001b[39m=\u001b[39;49m\u001b[39mFalse\u001b[39;49;00m,\n\u001b[1;32m     <a href='vscode-notebook-cell:/home/cgl/leximpact/leximpact-prepare-data/tests/aggregates.ipynb#W2sZmlsZQ%3D%3D?line=32'>33</a>\u001b[0m )\n",
-      "File \u001b[0;32m~/leximpact/leximpact-prepare-data/.venv/lib/python3.10/site-packages/openfisca_france_data/comparator.py:457\u001b[0m, in \u001b[0;36mAbstractComparator.compare\u001b[0;34m(self, browse, load, verbose, debug, target_variables, period, rebuild, summary, compute_divergence)\u001b[0m\n\u001b[1;32m    455\u001b[0m     \u001b[39mprint\u001b[39m(error)\n\u001b[1;32m    456\u001b[0m     pdb\u001b[39m.\u001b[39mpost_mortem(sys\u001b[39m.\u001b[39mexc_info()[\u001b[39m2\u001b[39m])\n\u001b[0;32m--> 457\u001b[0m \u001b[39mraise\u001b[39;00m error\n",
-      "File \u001b[0;32m~/leximpact/leximpact-prepare-data/.venv/lib/python3.10/site-packages/openfisca_france_data/comparator.py:399\u001b[0m, in \u001b[0;36mAbstractComparator.compare\u001b[0;34m(self, browse, load, verbose, debug, target_variables, period, rebuild, summary, compute_divergence)\u001b[0m\n\u001b[1;32m    395\u001b[0m input_dataframe_by_entity, target_dataframe_by_entity \u001b[39m=\u001b[39m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mget_test_dataframes(rebuild)\n\u001b[1;32m    397\u001b[0m log\u001b[39m.\u001b[39mdebug(\u001b[39mf\u001b[39m\u001b[39m\"\u001b[39m\u001b[39mTest data has been prepared in \u001b[39m\u001b[39m{\u001b[39;00mdatetime\u001b[39m.\u001b[39mdatetime\u001b[39m.\u001b[39mnow()\u001b[39m \u001b[39m\u001b[39m-\u001b[39m\u001b[39m \u001b[39mstart_time\u001b[39m}\u001b[39;00m\u001b[39m\"\u001b[39m)\n\u001b[0;32m--> 399\u001b[0m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49mcompute_aggregates_comparison(\n\u001b[1;32m    400\u001b[0m     input_dataframe_by_entity \u001b[39m=\u001b[39;49m input_dataframe_by_entity,\n\u001b[1;32m    401\u001b[0m     )\n\u001b[1;32m    403\u001b[0m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mcompute_distibution_comparison(input_dataframe_by_entity \u001b[39m=\u001b[39m input_dataframe_by_entity)\n\u001b[1;32m    405\u001b[0m \u001b[39mif\u001b[39;00m compute_divergence:\n",
-      "File \u001b[0;32m~/leximpact/leximpact-prepare-data/leximpact_prepare_data/scenario_tools/comparison.py:631\u001b[0m, in \u001b[0;36mLeximpactErfsComparator.compute_aggregates_comparison\u001b[0;34m(self, input_dataframe_by_entity)\u001b[0m\n\u001b[1;32m    628\u001b[0m     summary[\u001b[39m\"\u001b[39m\u001b[39msource\u001b[39m\u001b[39m\"\u001b[39m] \u001b[39m=\u001b[39m \u001b[39m\"\u001b[39m\u001b[39msimulation\u001b[39m\u001b[39m\"\u001b[39m\n\u001b[1;32m    629\u001b[0m     \u001b[39mreturn\u001b[39;00m summary\n\u001b[0;32m--> 631\u001b[0m survey_scenario \u001b[39m=\u001b[39m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49mget_survey_scenario()\n\u001b[1;32m    633\u001b[0m records \u001b[39m=\u001b[39m (\n\u001b[1;32m    634\u001b[0m     [\n\u001b[1;32m    635\u001b[0m         summarize_variable_from_pote(variable)\n\u001b[0;32m   (...)\u001b[0m\n\u001b[1;32m    649\u001b[0m     ]\n\u001b[1;32m    650\u001b[0m )\n\u001b[1;32m    652\u001b[0m df \u001b[39m=\u001b[39m (\n\u001b[1;32m    653\u001b[0m     pd\u001b[39m.\u001b[39mDataFrame\u001b[39m.\u001b[39mfrom_records(records)\n\u001b[1;32m    654\u001b[0m     \u001b[39m.\u001b[39msort_values([\u001b[39m\"\u001b[39m\u001b[39mvariable\u001b[39m\u001b[39m\"\u001b[39m, \u001b[39m\"\u001b[39m\u001b[39msource\u001b[39m\u001b[39m\"\u001b[39m])\n\u001b[1;32m    655\u001b[0m     \u001b[39m.\u001b[39mset_index([\u001b[39m\"\u001b[39m\u001b[39mvariable\u001b[39m\u001b[39m\"\u001b[39m, \u001b[39m\"\u001b[39m\u001b[39msource\u001b[39m\u001b[39m\"\u001b[39m])\n\u001b[1;32m    656\u001b[0m )\n",
-      "File \u001b[0;32m~/leximpact/leximpact-prepare-data/leximpact_prepare_data/scenario_tools/comparison.py:79\u001b[0m, in \u001b[0;36mLeximpactErfsComparator.get_survey_scenario\u001b[0;34m(self, data, survey_name)\u001b[0m\n\u001b[1;32m     70\u001b[0m survey_scenario \u001b[39m=\u001b[39m PipelineErfsSurveyScenario(\n\u001b[1;32m     71\u001b[0m     period\u001b[39m=\u001b[39m\u001b[39mself\u001b[39m\u001b[39m.\u001b[39mperiod,\n\u001b[1;32m     72\u001b[0m     annee_donnees\u001b[39m=\u001b[39m\u001b[39mself\u001b[39m\u001b[39m.\u001b[39mannee_donnees,\n\u001b[0;32m   (...)\u001b[0m\n\u001b[1;32m     75\u001b[0m     data\u001b[39m=\u001b[39mdata,\n\u001b[1;32m     76\u001b[0m ) \n\u001b[1;32m     78\u001b[0m \u001b[39m#survey_scenario.tax_benefit_system = survey_scenario.tax_benefits_systems['baseline']\u001b[39;00m\n\u001b[0;32m---> 79\u001b[0m tbs \u001b[39m=\u001b[39m survey_scenario\u001b[39m.\u001b[39;49mtax_benefits_systems[\u001b[39m'\u001b[39m\u001b[39mbaseline\u001b[39m\u001b[39m'\u001b[39m]\n\u001b[1;32m     80\u001b[0m \u001b[39mfor\u001b[39;00m variable \u001b[39min\u001b[39;00m foyer_projected_variables:\n\u001b[1;32m     81\u001b[0m     class_name \u001b[39m=\u001b[39m \u001b[39mf\u001b[39m\u001b[39m\"\u001b[39m\u001b[39m{\u001b[39;00mvariable\u001b[39m}\u001b[39;00m\u001b[39m_foyer_fiscal\u001b[39m\u001b[39m\"\u001b[39m\n",
-      "\u001b[0;31mAttributeError\u001b[0m: 'PipelineErfsSurveyScenario' object has no attribute 'tax_benefits_systems'"
+      "File \u001b[0;32m~/leximpact/openfisca-france-data/openfisca_france_data/comparator.py:457\u001b[0m, in \u001b[0;36mAbstractComparator.compare\u001b[0;34m(self, browse, load, verbose, debug, target_variables, period, rebuild, summary, compute_divergence)\u001b[0m\n\u001b[1;32m    455\u001b[0m     \u001b[39mprint\u001b[39m(error)\n\u001b[1;32m    456\u001b[0m     pdb\u001b[39m.\u001b[39mpost_mortem(sys\u001b[39m.\u001b[39mexc_info()[\u001b[39m2\u001b[39m])\n\u001b[0;32m--> 457\u001b[0m \u001b[39mraise\u001b[39;00m error\n",
+      "File \u001b[0;32m~/leximpact/openfisca-france-data/openfisca_france_data/comparator.py:399\u001b[0m, in \u001b[0;36mAbstractComparator.compare\u001b[0;34m(self, browse, load, verbose, debug, target_variables, period, rebuild, summary, compute_divergence)\u001b[0m\n\u001b[1;32m    395\u001b[0m input_dataframe_by_entity, target_dataframe_by_entity \u001b[39m=\u001b[39m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mget_test_dataframes(rebuild)\n\u001b[1;32m    397\u001b[0m log\u001b[39m.\u001b[39mdebug(\u001b[39mf\u001b[39m\u001b[39m\"\u001b[39m\u001b[39mTest data has been prepared in \u001b[39m\u001b[39m{\u001b[39;00mdatetime\u001b[39m.\u001b[39mdatetime\u001b[39m.\u001b[39mnow()\u001b[39m \u001b[39m\u001b[39m-\u001b[39m\u001b[39m \u001b[39mstart_time\u001b[39m}\u001b[39;00m\u001b[39m\"\u001b[39m)\n\u001b[0;32m--> 399\u001b[0m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49mcompute_aggregates_comparison(\n\u001b[1;32m    400\u001b[0m     input_dataframe_by_entity \u001b[39m=\u001b[39;49m input_dataframe_by_entity,\n\u001b[1;32m    401\u001b[0m     )\n\u001b[1;32m    403\u001b[0m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mcompute_distibution_comparison(input_dataframe_by_entity \u001b[39m=\u001b[39m input_dataframe_by_entity)\n\u001b[1;32m    405\u001b[0m \u001b[39mif\u001b[39;00m compute_divergence:\n",
+      "File \u001b[0;32m~/leximpact/leximpact-prepare-data/leximpact_prepare_data/scenario_tools/comparison.py:664\u001b[0m, in \u001b[0;36mLeximpactErfsComparator.compute_aggregates_comparison\u001b[0;34m(self, input_dataframe_by_entity)\u001b[0m\n\u001b[1;32m    651\u001b[0m     \u001b[39mreturn\u001b[39;00m summary\n\u001b[1;32m    653\u001b[0m survey_scenario \u001b[39m=\u001b[39m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mget_survey_scenario()\n\u001b[1;32m    655\u001b[0m records \u001b[39m=\u001b[39m (\n\u001b[1;32m    656\u001b[0m     [\n\u001b[1;32m    657\u001b[0m         summarize_variable_from_pote(variable)\n\u001b[1;32m    658\u001b[0m         \u001b[39mfor\u001b[39;00m variable \u001b[39min\u001b[39;00m variable_pote_by_variable\u001b[39m.\u001b[39mkeys()\n\u001b[1;32m    659\u001b[0m     ]\n\u001b[1;32m    660\u001b[0m     \u001b[39m+\u001b[39m [\n\u001b[1;32m    661\u001b[0m         summarize_variable(variable, survey_scenario, period)\n\u001b[1;32m    662\u001b[0m         \u001b[39mfor\u001b[39;00m variable \u001b[39min\u001b[39;00m variable_pote_by_variable\u001b[39m.\u001b[39mkeys()\n\u001b[1;32m    663\u001b[0m     ]\n\u001b[0;32m--> 664\u001b[0m     \u001b[39m+\u001b[39m [\n\u001b[1;32m    665\u001b[0m         summarize_variable_from_pote_tenth(variable)\n\u001b[1;32m    666\u001b[0m         \u001b[39mfor\u001b[39;00m variable \u001b[39min\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mtarget_variables\n\u001b[1;32m    667\u001b[0m     ]\n\u001b[1;32m    668\u001b[0m     \u001b[39m+\u001b[39m [\n\u001b[1;32m    669\u001b[0m         summarize_variable(variable, survey_scenario, period)\n\u001b[1;32m    670\u001b[0m         \u001b[39mfor\u001b[39;00m variable \u001b[39min\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mtarget_variables\n\u001b[1;32m    671\u001b[0m     ]\n\u001b[1;32m    672\u001b[0m )\n\u001b[1;32m    674\u001b[0m df \u001b[39m=\u001b[39m (\n\u001b[1;32m    675\u001b[0m     pd\u001b[39m.\u001b[39mDataFrame\u001b[39m.\u001b[39mfrom_records(records)\n\u001b[1;32m    676\u001b[0m     \u001b[39m.\u001b[39msort_values([\u001b[39m\"\u001b[39m\u001b[39mvariable\u001b[39m\u001b[39m\"\u001b[39m, \u001b[39m\"\u001b[39m\u001b[39msource\u001b[39m\u001b[39m\"\u001b[39m])\n\u001b[1;32m    677\u001b[0m     \u001b[39m.\u001b[39mset_index([\u001b[39m\"\u001b[39m\u001b[39mvariable\u001b[39m\u001b[39m\"\u001b[39m, \u001b[39m\"\u001b[39m\u001b[39msource\u001b[39m\u001b[39m\"\u001b[39m])\n\u001b[1;32m    678\u001b[0m )\n\u001b[1;32m    680\u001b[0m aggregates_table \u001b[39m=\u001b[39m pd\u001b[39m.\u001b[39mDataFrame(index\u001b[39m=\u001b[39mdf\u001b[39m.\u001b[39mindex)\n",
+      "File \u001b[0;32m~/leximpact/leximpact-prepare-data/leximpact_prepare_data/scenario_tools/comparison.py:665\u001b[0m, in \u001b[0;36m<listcomp>\u001b[0;34m(.0)\u001b[0m\n\u001b[1;32m    651\u001b[0m     \u001b[39mreturn\u001b[39;00m summary\n\u001b[1;32m    653\u001b[0m survey_scenario \u001b[39m=\u001b[39m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mget_survey_scenario()\n\u001b[1;32m    655\u001b[0m records \u001b[39m=\u001b[39m (\n\u001b[1;32m    656\u001b[0m     [\n\u001b[1;32m    657\u001b[0m         summarize_variable_from_pote(variable)\n\u001b[1;32m    658\u001b[0m         \u001b[39mfor\u001b[39;00m variable \u001b[39min\u001b[39;00m variable_pote_by_variable\u001b[39m.\u001b[39mkeys()\n\u001b[1;32m    659\u001b[0m     ]\n\u001b[1;32m    660\u001b[0m     \u001b[39m+\u001b[39m [\n\u001b[1;32m    661\u001b[0m         summarize_variable(variable, survey_scenario, period)\n\u001b[1;32m    662\u001b[0m         \u001b[39mfor\u001b[39;00m variable \u001b[39min\u001b[39;00m variable_pote_by_variable\u001b[39m.\u001b[39mkeys()\n\u001b[1;32m    663\u001b[0m     ]\n\u001b[1;32m    664\u001b[0m     \u001b[39m+\u001b[39m [\n\u001b[0;32m--> 665\u001b[0m         summarize_variable_from_pote_tenth(variable)\n\u001b[1;32m    666\u001b[0m         \u001b[39mfor\u001b[39;00m variable \u001b[39min\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mtarget_variables\n\u001b[1;32m    667\u001b[0m     ]\n\u001b[1;32m    668\u001b[0m     \u001b[39m+\u001b[39m [\n\u001b[1;32m    669\u001b[0m         summarize_variable(variable, survey_scenario, period)\n\u001b[1;32m    670\u001b[0m         \u001b[39mfor\u001b[39;00m variable \u001b[39min\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mtarget_variables\n\u001b[1;32m    671\u001b[0m     ]\n\u001b[1;32m    672\u001b[0m )\n\u001b[1;32m    674\u001b[0m df \u001b[39m=\u001b[39m (\n\u001b[1;32m    675\u001b[0m     pd\u001b[39m.\u001b[39mDataFrame\u001b[39m.\u001b[39mfrom_records(records)\n\u001b[1;32m    676\u001b[0m     \u001b[39m.\u001b[39msort_values([\u001b[39m\"\u001b[39m\u001b[39mvariable\u001b[39m\u001b[39m\"\u001b[39m, \u001b[39m\"\u001b[39m\u001b[39msource\u001b[39m\u001b[39m\"\u001b[39m])\n\u001b[1;32m    677\u001b[0m     \u001b[39m.\u001b[39mset_index([\u001b[39m\"\u001b[39m\u001b[39mvariable\u001b[39m\u001b[39m\"\u001b[39m, \u001b[39m\"\u001b[39m\u001b[39msource\u001b[39m\u001b[39m\"\u001b[39m])\n\u001b[1;32m    678\u001b[0m )\n\u001b[1;32m    680\u001b[0m aggregates_table \u001b[39m=\u001b[39m pd\u001b[39m.\u001b[39mDataFrame(index\u001b[39m=\u001b[39mdf\u001b[39m.\u001b[39mindex)\n",
+      "File \u001b[0;32m~/leximpact/leximpact-prepare-data/leximpact_prepare_data/scenario_tools/comparison.py:547\u001b[0m, in \u001b[0;36mLeximpactErfsComparator.compute_aggregates_comparison.<locals>.summarize_variable_from_pote_tenth\u001b[0;34m(variable)\u001b[0m\n\u001b[1;32m    543\u001b[0m config \u001b[39m=\u001b[39m Configuration(project_folder\u001b[39m=\u001b[39m\u001b[39m\"\u001b[39m\u001b[39mleximpact-prepare-data\u001b[39m\u001b[39m\"\u001b[39m)\n\u001b[1;32m    544\u001b[0m aggregate_manager \u001b[39m=\u001b[39m AggregateManager(\n\u001b[1;32m    545\u001b[0m     aggregates_path\u001b[39m=\u001b[39mconfig\u001b[39m.\u001b[39mget(\u001b[39m\"\u001b[39m\u001b[39mAGREGATS_PATH\u001b[39m\u001b[39m\"\u001b[39m)\n\u001b[1;32m    546\u001b[0m )\n\u001b[0;32m--> 547\u001b[0m aggregate_manager\u001b[39m.\u001b[39;49mload_aggregate(\n\u001b[1;32m    548\u001b[0m     \u001b[39m\"\u001b[39;49m\u001b[39mPOTE\u001b[39;49m\u001b[39m\"\u001b[39;49m,\n\u001b[1;32m    549\u001b[0m     variable_pote,\n\u001b[1;32m    550\u001b[0m     year\u001b[39m=\u001b[39;49m\u001b[39mstr\u001b[39;49m(period),\n\u001b[1;32m    551\u001b[0m     data_structure\u001b[39m=\u001b[39;49m\u001b[39m\"\u001b[39;49m\u001b[39mdistribution_100\u001b[39;49m\u001b[39m\"\u001b[39;49m,\n\u001b[1;32m    552\u001b[0m )\n\u001b[1;32m    554\u001b[0m \u001b[39mfor\u001b[39;00m d \u001b[39min\u001b[39;00m aggregate_manager\u001b[39m.\u001b[39maggregate\u001b[39m.\u001b[39mdata:\n\u001b[1;32m    555\u001b[0m     \u001b[39mif\u001b[39;00m (\n\u001b[1;32m    556\u001b[0m         d\u001b[39m.\u001b[39mdata_structure \u001b[39m==\u001b[39m DataStructure\u001b[39m.\u001b[39mDISTRIBUTION_100\n\u001b[1;32m    557\u001b[0m         \u001b[39mand\u001b[39;00m d\u001b[39m.\u001b[39mdate \u001b[39m==\u001b[39m \u001b[39mstr\u001b[39m(period)\n\u001b[1;32m    558\u001b[0m     ):\n",
+      "File \u001b[0;32m~/leximpact/leximpact-prepare-data/.venv/lib/python3.10/site-packages/leximpact_aggregates/aggregate.py:324\u001b[0m, in \u001b[0;36mAggregateManager.load_aggregate\u001b[0;34m(self, dataset, variable, year, data_structure, copules_var)\u001b[0m\n\u001b[1;32m    314\u001b[0m filename \u001b[39m=\u001b[39m AggregateManager\u001b[39m.\u001b[39mget_path(\n\u001b[1;32m    315\u001b[0m     \u001b[39mself\u001b[39m\u001b[39m.\u001b[39maggregates_path,\n\u001b[1;32m    316\u001b[0m     dataset,\n\u001b[0;32m   (...)\u001b[0m\n\u001b[1;32m    321\u001b[0m     copules_var,\n\u001b[1;32m    322\u001b[0m )\n\u001b[1;32m    323\u001b[0m \u001b[39m# Path(self.aggregates_path) / dataset / year / (variable + \".yaml\")\u001b[39;00m\n\u001b[0;32m--> 324\u001b[0m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49mload_from_yaml(filename)\n\u001b[1;32m    325\u001b[0m list_data \u001b[39m=\u001b[39m []\n\u001b[1;32m    326\u001b[0m \u001b[39mfor\u001b[39;00m d \u001b[39min\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39maggregate\u001b[39m.\u001b[39mdata:\n",
+      "File \u001b[0;32m~/leximpact/leximpact-prepare-data/.venv/lib/python3.10/site-packages/leximpact_aggregates/aggregate.py:237\u001b[0m, in \u001b[0;36mAggregateManager.load_from_yaml\u001b[0;34m(self, filename)\u001b[0m\n\u001b[1;32m    231\u001b[0m \u001b[39mdef\u001b[39;00m \u001b[39mload_from_yaml\u001b[39m(\u001b[39mself\u001b[39m, filename: \u001b[39mstr\u001b[39m):\n\u001b[1;32m    232\u001b[0m \u001b[39m    \u001b[39m\u001b[39m\"\"\"\u001b[39;00m\n\u001b[1;32m    233\u001b[0m \u001b[39m    Read a YAML file to an Aggregate\u001b[39;00m\n\u001b[1;32m    234\u001b[0m \u001b[39m    Args:\u001b[39;00m\n\u001b[1;32m    235\u001b[0m \u001b[39m        filename (str): The path and filename to read\u001b[39;00m\n\u001b[1;32m    236\u001b[0m \u001b[39m    \"\"\"\u001b[39;00m\n\u001b[0;32m--> 237\u001b[0m     \u001b[39mwith\u001b[39;00m \u001b[39mopen\u001b[39;49m(filename) \u001b[39mas\u001b[39;00m file:\n\u001b[1;32m    238\u001b[0m         \u001b[39mself\u001b[39m\u001b[39m.\u001b[39maggregate \u001b[39m=\u001b[39m ruamel\u001b[39m.\u001b[39myaml\u001b[39m.\u001b[39mYAML()\u001b[39m.\u001b[39mload(file)\n",
+      "\u001b[0;31mFileNotFoundError\u001b[0m: [Errno 2] No such file or directory: '/home/cgl/leximpact/leximpact-aggregates/aggregates/POTE/distribution_100/2023/assiette_csg_plus_values.yaml'"
      ]
     }
    ],
@@ -187,6 +208,13 @@
     "    summary=False,\n",
     ")"
    ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": []
   }
  ],
  "metadata": {