Skip to content
GitLab
Explore
Sign in
Register
Primary navigation
Search or go to…
Project
leximpact-prepare-data
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Container registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
GitLab community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
leximpact
Simulateur socio-fiscal
Budget
leximpact-prepare-data
Commits
0e87b3d0
Commit
0e87b3d0
authored
3 months ago
by
BENOIT MICHAUD
Browse files
Options
Downloads
Patches
Plain Diff
vérifier la mensualisation
parent
c8b2c17a
No related branches found
No related tags found
1 merge request
!152
Integration de la mensualisation
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
leximpact_prepare_data/scenario_tools/mensualisation.py
+60
-4
60 additions, 4 deletions
leximpact_prepare_data/scenario_tools/mensualisation.py
with
60 additions
and
4 deletions
leximpact_prepare_data/scenario_tools/mensualisation.py
+
60
−
4
View file @
0e87b3d0
...
...
@@ -346,7 +346,7 @@ def mensualiser_revenus(
# copier la df avec uniquement noindiv
df_mois
=
df
.
copy
()
df_mois
=
df_mois
[[
"
noindiv
"
]]
df_mois
=
df_mois
[[
"
noindiv
"
,
"
person_id
"
]]
# variables activité
cols_activite
=
[
...
...
@@ -370,7 +370,7 @@ def mensualiser_revenus(
df_mois
[
col_chomage
]
=
np
.
where
(
df
[
"
nb_mois_avec_chomage
"
]
>
0
,
(
df
[
col_chomage
]
/
df
[
"
nb_mois_avec_chomage
"
]).
where
(
df
[
col_mois
]
==
1
,
0
df
[
col_mois
]
==
2
,
0
),
df
[
col_chomage
]
/
12
,
)
...
...
@@ -381,7 +381,7 @@ def mensualiser_revenus(
df_mois
[
col_retraite
]
=
np
.
where
(
df
[
"
nb_mois_avec_retraite
"
]
>
0
,
(
df
[
col_retraite
]
/
df
[
"
nb_mois_avec_retraite
"
]).
where
(
df
[
col_mois
]
==
1
,
0
df
[
col_mois
]
==
3
,
0
),
df
[
col_retraite
]
/
12
,
)
...
...
@@ -407,6 +407,9 @@ def mensualiser_revenus(
# --- Ajuster les horaires temps plein ---
df_mois
=
heures_temps_plein
(
df_mois
)
# --- Ranger par ordre croissant de noindiv ---
df_mois
=
df_mois
.
sort_values
([
"
person_id
"
]).
reset_index
()
# --- Enregistrer la table dans la survey ---
nom_fichier_export
=
f
"
individu_
{
annee_table
}
_
{
str
(
i
).
zfill
(
2
)
}
"
...
...
@@ -468,6 +471,48 @@ def heures_temps_plein(df):
return
df
def
verifier_mensualisation
(
df_annee
,
dossier_export
,
annee_table
):
# variables mensualisées à vérifier
variables
=
[
"
salaire_de_base
"
,
"
chomage_brut
"
,
"
retraite_brute
"
,
"
traitement_indiciaire_brut
"
,
"
primes_fonction_publique
"
,
]
# boucle : pour chaque variable
for
var
in
variables
:
# initialiser array
variable_mensualisee_somme
=
[]
# boucle : pour chaque mois
for
i_mois
in
range
(
1
,
13
):
# importer la table mensuelle
df_mois
=
pd
.
read_parquet
(
f
"
{
dossier_export
}
/individu_
{
annee_table
}
_
{
str
(
i_mois
).
zfill
(
2
)
}
.parquet
"
)
# additionner dans l'array les valeurs de la variable pour chaque mois
if
i_mois
==
1
:
variable_mensualisee_somme
=
df_mois
[
var
]
else
:
variable_mensualisee_somme
=
variable_mensualisee_somme
+
df_mois
[
var
]
# --- Vérifier l'égalité des arrays (annuel et mensuel) ---
# arrondir les arrays (annuel et mensuel)
arrondi
=
0
array_annuel
=
df_annee
[
var
].
round
(
arrondi
)
array_mensuel
=
variable_mensualisee_somme
.
round
(
arrondi
)
# vérifier que les arrays sont identiques (en tenant compte de l'arrondi)
assert
(
abs
(
array_annuel
-
array_mensuel
)
<=
1
).
all
()
def
mensualiser
(
collection
,
survey_name
,
...
...
@@ -498,15 +543,21 @@ def mensualiser(
# reconstruction de la table avec SPRXX
df_mens
=
pd
.
merge
(
df_indiv
,
table_leximpact
[[
"
noindiv
"
,
"
date_naissance
"
]
+
variables
],
table_leximpact
[[
"
noindiv
"
,
"
person_id
"
,
"
date_naissance
"
]
+
variables
],
on
=
"
noindiv
"
,
)
assert
len
(
df_mens
)
==
len
(
table_leximpact
),
"
La table issue du merge n
'
a pas le même nombre de lignes que la table LexImpact.
"
# --- Mettre en cohérence l'activité
df_mens
=
coherence_retraites
(
df_mens
,
annee_table
)
df_mens
=
coherence_activite_manquante_vectorise
(
df_mens
,
annee_table
)
# classer par ordre croissant de person_id
df_mens
=
df_mens
.
sort_values
([
"
person_id
"
]).
reset_index
()
# --- Mensualiser les revenus et variables catégorielles ---
mensualiser_revenus
(
collection
,
...
...
@@ -517,6 +568,11 @@ def mensualiser(
config_files_directory
,
)
# --- Test : vérifier la mensualisation ---
verifier_mensualisation
(
df_annee
=
df_mens
,
dossier_export
=
dossier_export
,
annee_table
=
annee_table
)
if
__name__
==
"
__main__
"
:
mensualiser
(
collection
=
"
leximpact
"
,
survey_name
=
"
leximpact_2025
"
,
annee_table
=
2025
)
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment