Skip to content
Snippets Groups Projects
Select Git revision
  • 07e93d08283b2bf7fbdd2555b8941ff375b974ab
  • master default protected
  • suppression_allegements_specifiques
  • budgetaire_retraites_plf
  • doc-script-gen-off-tests
  • 366-signe-a-cote-du-droit-en-vigueur-sur-l-ui-pour-indiquer-que-la-reforme-a-eu-lieu-mais-qu-elle-n
  • revalo_retraites
  • 381-pb-affichage-labels-des-parametres-sur-plus-de-3-lignes
  • ajoute-duplicate-aide-logement
  • poc_castype_ia
  • parametres-editables-budget
  • ui-parametres
  • 355-les-dispositifs-prestations-sociales-du-graphique-se-cachent-montrent-en-meme-temps-2
  • 358-les-variables-dont-le-montant-est-nul-apparaissent-en-bleu-et-non-cliquables
  • 356-ajuster-la-largeur-sur-les-graphiques-budgetaires
  • incoherence_cas_type_0
  • fix-ui-suppression-tranches-baremes
  • ajout-agregat-cehr-version-plf
  • impact_carbone
  • xlsx
  • header_revamp
  • 0.0.1191
  • 0.0.1190
  • 0.0.1189
  • 0.0.1188
  • 0.0.1187
  • 0.0.1186
  • 0.0.1185
  • 0.0.1184
  • 0.0.1183
  • 0.0.1182
  • 0.0.1181
  • 0.0.1180
  • 0.0.1179
  • 0.0.1178
  • 0.0.1177
  • 0.0.1176
  • 0.0.1175
  • 0.0.1174
  • 0.0.1173
  • 0.0.1172
41 results

tailwind.config.cjs

Blame
  • prix_carburant.ipynb NaN GiB
    {
     "cells": [
      {
       "cell_type": "markdown",
       "id": "b9c36fa1-d0ac-4202-91ba-236830bd3d1b",
       "metadata": {},
       "source": [
        "# Prix Carburant"
       ]
      },
      {
       "cell_type": "code",
       "execution_count": null,
       "id": "b887ef4a-6f33-4152-af83-daeeffba5a79",
       "metadata": {},
       "outputs": [
        {
         "ename": "",
         "evalue": "",
         "output_type": "error",
         "traceback": [
          "\u001b[1;31mRunning cells with 'Python 3.8.10 64-bit' requires ipykernel package.\n",
          "Run the following command to install 'ipykernel' into the Python environment. \n",
          "Command: '/bin/python3 -m pip install ipykernel -U --user --force-reinstall'"
         ]
        }
       ],
       "source": [
        "import zipfile\n",
        "import os\n",
        "from urllib.request import urlretrieve\n",
        "from datetime import date\n",
        "\n",
        "import tempfile\n",
        "import pandas as pd"
       ]
      },
      {
       "cell_type": "code",
       "execution_count": 3,
       "id": "4268984b-2876-498d-85e1-110f242376f4",
       "metadata": {},
       "outputs": [
        {
         "ename": "FileNotFoundError",
         "evalue": "[Errno 2] No such file or directory: 'prix_litre_mensuel_carburant.csv'",
         "output_type": "error",
         "traceback": [
          "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
          "\u001b[0;31mFileNotFoundError\u001b[0m                         Traceback (most recent call last)",
          "\u001b[0;32m<ipython-input-3-e86df01e3e85>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m      1\u001b[0m \u001b[0;31m# Si il y a déjà des fichiers avec ces noms, le script ne les remplaces pas, donc il faut les suprimer au debut.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0mos\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mremove\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"prix_litre_mensuel_carburant.csv\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m      3\u001b[0m \u001b[0mos\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mremove\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"prix_hectolitre_mensuel_carburant.csv\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m      4\u001b[0m \u001b[0mos\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mremove\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"prix_litre_annuel_carburant.csv\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m      5\u001b[0m \u001b[0mos\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mremove\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"prix_hectolitre_annuel_carburant.csv\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
          "\u001b[0;31mFileNotFoundError\u001b[0m: [Errno 2] No such file or directory: 'prix_litre_mensuel_carburant.csv'"
         ]
        }
       ],
       "source": [
        "# Si il y a déjà des fichiers avec ces noms, le script ne les remplaces pas, donc il faut les suprimer au debut.\n",
        "os.remove(\"prix_litre_mensuel_carburant.csv\")\n",
        "os.remove(\"prix_hectolitre_mensuel_carburant.csv\")\n",
        "os.remove(\"prix_litre_annuel_carburant.csv\")\n",
        "os.remove(\"prix_hectolitre_annuel_carburant.csv\")"
       ]
      },
      {
       "cell_type": "code",
       "execution_count": 4,
       "id": "36d19b81-57cc-4b3a-be5c-2c5813367b6f",
       "metadata": {},
       "outputs": [],
       "source": [
        "carburants = {\"diesel\":\"000442588\",\n",
        "              \"super_98\":\"000442589\",\n",
        "             \"super_95\":\"000849411\",\n",
        "             \"super_plombe\":\"000442587\",\n",
        "             \"super_95_e10\":\"010596132\"}  ##le 95_e10 j'ai repris l'écriture de l'IPP, mais à voir si c'est pas juste super_e10"
       ]
      },
      {
       "cell_type": "code",
       "execution_count": 9,
       "id": "5fbf5893-de0b-4522-91e6-49bf992cb768",
       "metadata": {},
       "outputs": [],
       "source": [
        "def get_df(carburant,id_url):\n",
        "    directory_to_extract_to = tempfile.mkdtemp(prefix=\"prix_carburants_\")\n",
        "    path_to_zip_file = os.path.join(directory_to_extract_to, f\"{carburant}.zip\")\n",
        "    urlretrieve(f\"https://www.insee.fr/fr/statistiques/serie/telecharger/csv/{id_url}?ordre=antechronologique&transposition=donneescolonne&periodeDebut=1&anneeDebut=1992&periodeFin={date.today().month}&anneeFin={date.today().year}&revision=sansrevisions\", path_to_zip_file)\n",
        "    with zipfile.ZipFile(path_to_zip_file, 'r') as zip_ref:\n",
        "        zip_ref.extractall(directory_to_extract_to)\n",
        "    df = pd.read_csv(os.path.join(directory_to_extract_to, \"valeurs_mensuelles.csv\"), sep=\";\")\n",
        "    return df"
       ]
      },
      {
       "cell_type": "code",
       "execution_count": 6,
       "id": "1925b873-dc73-4d8b-b837-463f5f846f47",
       "metadata": {},
       "outputs": [],
       "source": [
        "def creat_df(carburant,df):\n",
        "    df.columns = ['date', f'{carburant}_ttc', 'codes']\n",
        "    df = df.dropna(subset = ['codes'])\n",
        "    del df['codes']\n",
        "    df['date'] = df['date'].astype(str) + '-01'\n",
        "    return df"
       ]
      },
      {
       "cell_type": "code",
       "execution_count": 7,
       "id": "f1f6d31d-ed11-4d44-9a2c-d11a0ca2b8fb",
       "metadata": {},
       "outputs": [],
       "source": [
        "def clean_df(carburant,df):\n",
        "    df[f'{carburant}_ttc'] = pd.to_numeric(df[f'{carburant}_ttc'])\n",
        "    return df   "
       ]
      },
      {
       "cell_type": "code",
       "execution_count": 10,
       "id": "f566506b-95b9-4390-a6a6-f4ebfd844469",
       "metadata": {},
       "outputs": [
        {
         "name": "stderr",
         "output_type": "stream",
         "text": [
          "<ipython-input-6-d23337e5192c>:5: SettingWithCopyWarning: \n",
          "A value is trying to be set on a copy of a slice from a DataFrame.\n",
          "Try using .loc[row_indexer,col_indexer] = value instead\n",
          "\n",
          "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
          "  df['date'] = df['date'].astype(str) + '-01'\n",
          "<ipython-input-6-d23337e5192c>:5: SettingWithCopyWarning: \n",
          "A value is trying to be set on a copy of a slice from a DataFrame.\n",
          "Try using .loc[row_indexer,col_indexer] = value instead\n",
          "\n",
          "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
          "  df['date'] = df['date'].astype(str) + '-01'\n",
          "<ipython-input-6-d23337e5192c>:5: SettingWithCopyWarning: \n",
          "A value is trying to be set on a copy of a slice from a DataFrame.\n",
          "Try using .loc[row_indexer,col_indexer] = value instead\n",
          "\n",
          "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
          "  df['date'] = df['date'].astype(str) + '-01'\n",
          "<ipython-input-6-d23337e5192c>:5: SettingWithCopyWarning: \n",
          "A value is trying to be set on a copy of a slice from a DataFrame.\n",
          "Try using .loc[row_indexer,col_indexer] = value instead\n",
          "\n",
          "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
          "  df['date'] = df['date'].astype(str) + '-01'\n",
          "<ipython-input-6-d23337e5192c>:5: SettingWithCopyWarning: \n",
          "A value is trying to be set on a copy of a slice from a DataFrame.\n",
          "Try using .loc[row_indexer,col_indexer] = value instead\n",
          "\n",
          "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
          "  df['date'] = df['date'].astype(str) + '-01'\n"
         ]
        }
       ],
       "source": [
        "df_mens = pd.DataFrame({'date':[\"1992-01-01\"]})\n",
        "for carburant, id_url in carburants.items():\n",
        "        df = get_df(carburant,id_url)\n",
        "        df_creat = creat_df(carburant,df)\n",
        "        df_mens = df_mens.merge(df_creat, on=['date','date'], how='outer')\n",
        "        df_mens = clean_df(carburant,df_mens)\n",
        "        df_mens.sort_values(by='date',ascending = False, inplace= True)"
       ]
      },
      {
       "cell_type": "code",
       "execution_count": 11,
       "id": "a7354947-55e1-47e5-9fcd-7be37b00131c",
       "metadata": {},
       "outputs": [
        {
         "data": {
          "text/html": [
           "<div>\n",
           "<style scoped>\n",
           "    .dataframe tbody tr th:only-of-type {\n",
           "        vertical-align: middle;\n",
           "    }\n",
           "\n",
           "    .dataframe tbody tr th {\n",
           "        vertical-align: top;\n",
           "    }\n",
           "\n",
           "    .dataframe thead th {\n",
           "        text-align: right;\n",
           "    }\n",
           "</style>\n",
           "<table border=\"1\" class=\"dataframe\">\n",
           "  <thead>\n",
           "    <tr style=\"text-align: right;\">\n",
           "      <th></th>\n",
           "      <th>date</th>\n",
           "      <th>diesel_ttc</th>\n",
           "      <th>super_98_ttc</th>\n",
           "      <th>super_95_ttc</th>\n",
           "      <th>super_plombe_ttc</th>\n",
           "      <th>super_95_e10_ttc</th>\n",
           "    </tr>\n",
           "  </thead>\n",
           "  <tbody>\n",
           "    <tr>\n",
           "      <th>0</th>\n",
           "      <td>2022-04-01</td>\n",
           "      <td>1.87</td>\n",
           "      <td>1.87</td>\n",
           "      <td>1.82</td>\n",
           "      <td>NaN</td>\n",
           "      <td>1.76</td>\n",
           "    </tr>\n",
           "    <tr>\n",
           "      <th>1</th>\n",
           "      <td>2022-03-01</td>\n",
           "      <td>2.02</td>\n",
           "      <td>2.05</td>\n",
           "      <td>2.00</td>\n",
           "      <td>NaN</td>\n",
           "      <td>1.96</td>\n",
           "    </tr>\n",
           "    <tr>\n",
           "      <th>2</th>\n",
           "      <td>2022-02-01</td>\n",
           "      <td>1.72</td>\n",
           "      <td>1.86</td>\n",
           "      <td>1.80</td>\n",
           "      <td>NaN</td>\n",
           "      <td>1.77</td>\n",
           "    </tr>\n",
           "    <tr>\n",
           "      <th>3</th>\n",
           "      <td>2022-01-01</td>\n",
           "      <td>1.63</td>\n",
           "      <td>1.77</td>\n",
           "      <td>1.71</td>\n",
           "      <td>NaN</td>\n",
           "      <td>1.69</td>\n",
           "    </tr>\n",
           "    <tr>\n",
           "      <th>4</th>\n",
           "      <td>2021-12-01</td>\n",
           "      <td>1.54</td>\n",
           "      <td>1.70</td>\n",
           "      <td>1.64</td>\n",
           "      <td>NaN</td>\n",
           "      <td>1.61</td>\n",
           "    </tr>\n",
           "    <tr>\n",
           "      <th>...</th>\n",
           "      <td>...</td>\n",
           "      <td>...</td>\n",
           "      <td>...</td>\n",
           "      <td>...</td>\n",
           "      <td>...</td>\n",
           "      <td>...</td>\n",
           "    </tr>\n",
           "    <tr>\n",
           "      <th>359</th>\n",
           "      <td>1992-05-01</td>\n",
           "      <td>0.54</td>\n",
           "      <td>0.78</td>\n",
           "      <td>NaN</td>\n",
           "      <td>0.81</td>\n",
           "      <td>NaN</td>\n",
           "    </tr>\n",
           "    <tr>\n",
           "      <th>360</th>\n",
           "      <td>1992-04-01</td>\n",
           "      <td>0.53</td>\n",
           "      <td>0.77</td>\n",
           "      <td>NaN</td>\n",
           "      <td>0.81</td>\n",
           "      <td>NaN</td>\n",
           "    </tr>\n",
           "    <tr>\n",
           "      <th>361</th>\n",
           "      <td>1992-03-01</td>\n",
           "      <td>0.54</td>\n",
           "      <td>0.77</td>\n",
           "      <td>NaN</td>\n",
           "      <td>0.81</td>\n",
           "      <td>NaN</td>\n",
           "    </tr>\n",
           "    <tr>\n",
           "      <th>362</th>\n",
           "      <td>1992-02-01</td>\n",
           "      <td>0.54</td>\n",
           "      <td>0.78</td>\n",
           "      <td>NaN</td>\n",
           "      <td>0.81</td>\n",
           "      <td>NaN</td>\n",
           "    </tr>\n",
           "    <tr>\n",
           "      <th>363</th>\n",
           "      <td>1992-01-01</td>\n",
           "      <td>0.54</td>\n",
           "      <td>0.78</td>\n",
           "      <td>NaN</td>\n",
           "      <td>0.80</td>\n",
           "      <td>NaN</td>\n",
           "    </tr>\n",
           "  </tbody>\n",
           "</table>\n",
           "<p>364 rows × 6 columns</p>\n",
           "</div>"
          ],
          "text/plain": [
           "           date  diesel_ttc  super_98_ttc  super_95_ttc  super_plombe_ttc  \\\n",
           "0    2022-04-01        1.87          1.87          1.82               NaN   \n",
           "1    2022-03-01        2.02          2.05          2.00               NaN   \n",
           "2    2022-02-01        1.72          1.86          1.80               NaN   \n",
           "3    2022-01-01        1.63          1.77          1.71               NaN   \n",
           "4    2021-12-01        1.54          1.70          1.64               NaN   \n",
           "..          ...         ...           ...           ...               ...   \n",
           "359  1992-05-01        0.54          0.78           NaN              0.81   \n",
           "360  1992-04-01        0.53          0.77           NaN              0.81   \n",
           "361  1992-03-01        0.54          0.77           NaN              0.81   \n",
           "362  1992-02-01        0.54          0.78           NaN              0.81   \n",
           "363  1992-01-01        0.54          0.78           NaN              0.80   \n",
           "\n",
           "     super_95_e10_ttc  \n",
           "0                1.76  \n",
           "1                1.96  \n",
           "2                1.77  \n",
           "3                1.69  \n",
           "4                1.61  \n",
           "..                ...  \n",
           "359               NaN  \n",
           "360               NaN  \n",
           "361               NaN  \n",
           "362               NaN  \n",
           "363               NaN  \n",
           "\n",
           "[364 rows x 6 columns]"
          ]
         },
         "execution_count": 11,
         "metadata": {},
         "output_type": "execute_result"
        }
       ],
       "source": [
        "df_mens.to_csv(\"prix_litre_mensuel_carburant.csv\", index=False, index_label=False)\n",
        "df_mens"
       ]
      },
      {
       "cell_type": "code",
       "execution_count": 12,
       "id": "49128573-c7ca-4d64-bac1-d84edcf65742",
       "metadata": {},
       "outputs": [
        {
         "name": "stdout",
         "output_type": "stream",
         "text": [
          "<class 'pandas.core.frame.DataFrame'>\n",
          "Int64Index: 364 entries, 0 to 363\n",
          "Data columns (total 6 columns):\n",
          " #   Column            Non-Null Count  Dtype  \n",
          "---  ------            --------------  -----  \n",
          " 0   date              364 non-null    object \n",
          " 1   diesel_ttc        364 non-null    float64\n",
          " 2   super_98_ttc      364 non-null    float64\n",
          " 3   super_95_ttc      244 non-null    float64\n",
          " 4   super_plombe_ttc  157 non-null    float64\n",
          " 5   super_95_e10_ttc  40 non-null     float64\n",
          "dtypes: float64(5), object(1)\n",
          "memory usage: 19.9+ KB\n"
         ]
        }
       ],
       "source": [
        "df_mens.describe()\n",
        "df_mens.info()"
       ]
      },
      {
       "cell_type": "code",
       "execution_count": 13,
       "id": "8edc5227-ee31-45fd-8d94-a7e803012312",
       "metadata": {},
       "outputs": [
        {
         "data": {
          "text/html": [
           "<div>\n",
           "<style scoped>\n",
           "    .dataframe tbody tr th:only-of-type {\n",
           "        vertical-align: middle;\n",
           "    }\n",
           "\n",
           "    .dataframe tbody tr th {\n",
           "        vertical-align: top;\n",
           "    }\n",
           "\n",
           "    .dataframe thead th {\n",
           "        text-align: right;\n",
           "    }\n",
           "</style>\n",
           "<table border=\"1\" class=\"dataframe\">\n",
           "  <thead>\n",
           "    <tr style=\"text-align: right;\">\n",
           "      <th></th>\n",
           "      <th>date</th>\n",
           "      <th>diesel_ttc</th>\n",
           "      <th>super_98_ttc</th>\n",
           "      <th>super_95_ttc</th>\n",
           "      <th>super_plombe_ttc</th>\n",
           "      <th>super_95_e10_ttc</th>\n",
           "    </tr>\n",
           "  </thead>\n",
           "  <tbody>\n",
           "    <tr>\n",
           "      <th>32</th>\n",
           "      <td>2022</td>\n",
           "      <td>1.81</td>\n",
           "      <td>1.89</td>\n",
           "      <td>1.83</td>\n",
           "      <td>NaN</td>\n",
           "      <td>1.80</td>\n",
           "    </tr>\n",
           "    <tr>\n",
           "      <th>31</th>\n",
           "      <td>2021</td>\n",
           "      <td>1.44</td>\n",
           "      <td>1.62</td>\n",
           "      <td>1.56</td>\n",
           "      <td>NaN</td>\n",
           "      <td>1.54</td>\n",
           "    </tr>\n",
           "    <tr>\n",
           "      <th>30</th>\n",
           "      <td>2020</td>\n",
           "      <td>1.27</td>\n",
           "      <td>1.42</td>\n",
           "      <td>1.37</td>\n",
           "      <td>NaN</td>\n",
           "      <td>1.35</td>\n",
           "    </tr>\n",
           "    <tr>\n",
           "      <th>29</th>\n",
           "      <td>2019</td>\n",
           "      <td>1.44</td>\n",
           "      <td>1.56</td>\n",
           "      <td>1.51</td>\n",
           "      <td>NaN</td>\n",
           "      <td>1.49</td>\n",
           "    </tr>\n",
           "    <tr>\n",
           "      <th>28</th>\n",
           "      <td>2018</td>\n",
           "      <td>1.44</td>\n",
           "      <td>1.57</td>\n",
           "      <td>1.51</td>\n",
           "      <td>NaN</td>\n",
           "      <td>NaN</td>\n",
           "    </tr>\n",
           "    <tr>\n",
           "      <th>27</th>\n",
           "      <td>2017</td>\n",
           "      <td>1.23</td>\n",
           "      <td>1.45</td>\n",
           "      <td>1.38</td>\n",
           "      <td>NaN</td>\n",
           "      <td>NaN</td>\n",
           "    </tr>\n",
           "    <tr>\n",
           "      <th>26</th>\n",
           "      <td>2016</td>\n",
           "      <td>1.11</td>\n",
           "      <td>1.35</td>\n",
           "      <td>1.32</td>\n",
           "      <td>NaN</td>\n",
           "      <td>NaN</td>\n",
           "    </tr>\n",
           "    <tr>\n",
           "      <th>25</th>\n",
           "      <td>2015</td>\n",
           "      <td>1.17</td>\n",
           "      <td>1.41</td>\n",
           "      <td>1.37</td>\n",
           "      <td>NaN</td>\n",
           "      <td>NaN</td>\n",
           "    </tr>\n",
           "    <tr>\n",
           "      <th>24</th>\n",
           "      <td>2014</td>\n",
           "      <td>1.30</td>\n",
           "      <td>1.54</td>\n",
           "      <td>1.50</td>\n",
           "      <td>NaN</td>\n",
           "      <td>NaN</td>\n",
           "    </tr>\n",
           "    <tr>\n",
           "      <th>23</th>\n",
           "      <td>2013</td>\n",
           "      <td>1.36</td>\n",
           "      <td>1.60</td>\n",
           "      <td>1.56</td>\n",
           "      <td>NaN</td>\n",
           "      <td>NaN</td>\n",
           "    </tr>\n",
           "    <tr>\n",
           "      <th>22</th>\n",
           "      <td>2012</td>\n",
           "      <td>1.41</td>\n",
           "      <td>1.63</td>\n",
           "      <td>1.59</td>\n",
           "      <td>NaN</td>\n",
           "      <td>NaN</td>\n",
           "    </tr>\n",
           "    <tr>\n",
           "      <th>21</th>\n",
           "      <td>2011</td>\n",
           "      <td>1.34</td>\n",
           "      <td>1.55</td>\n",
           "      <td>1.50</td>\n",
           "      <td>NaN</td>\n",
           "      <td>NaN</td>\n",
           "    </tr>\n",
           "    <tr>\n",
           "      <th>20</th>\n",
           "      <td>2010</td>\n",
           "      <td>1.16</td>\n",
           "      <td>1.40</td>\n",
           "      <td>1.36</td>\n",
           "      <td>NaN</td>\n",
           "      <td>NaN</td>\n",
           "    </tr>\n",
           "    <tr>\n",
           "      <th>19</th>\n",
           "      <td>2009</td>\n",
           "      <td>1.01</td>\n",
           "      <td>1.25</td>\n",
           "      <td>1.22</td>\n",
           "      <td>NaN</td>\n",
           "      <td>NaN</td>\n",
           "    </tr>\n",
           "    <tr>\n",
           "      <th>18</th>\n",
           "      <td>2008</td>\n",
           "      <td>1.28</td>\n",
           "      <td>1.42</td>\n",
           "      <td>1.38</td>\n",
           "      <td>NaN</td>\n",
           "      <td>NaN</td>\n",
           "    </tr>\n",
           "    <tr>\n",
           "      <th>17</th>\n",
           "      <td>2007</td>\n",
           "      <td>1.10</td>\n",
           "      <td>1.32</td>\n",
           "      <td>1.29</td>\n",
           "      <td>NaN</td>\n",
           "      <td>NaN</td>\n",
           "    </tr>\n",
           "    <tr>\n",
           "      <th>16</th>\n",
           "      <td>2006</td>\n",
           "      <td>1.09</td>\n",
           "      <td>1.29</td>\n",
           "      <td>1.25</td>\n",
           "      <td>NaN</td>\n",
           "      <td>NaN</td>\n",
           "    </tr>\n",
           "    <tr>\n",
           "      <th>15</th>\n",
           "      <td>2005</td>\n",
           "      <td>1.03</td>\n",
           "      <td>1.21</td>\n",
           "      <td>1.18</td>\n",
           "      <td>1.24</td>\n",
           "      <td>NaN</td>\n",
           "    </tr>\n",
           "    <tr>\n",
           "      <th>14</th>\n",
           "      <td>2004</td>\n",
           "      <td>0.89</td>\n",
           "      <td>1.09</td>\n",
           "      <td>1.08</td>\n",
           "      <td>1.16</td>\n",
           "      <td>NaN</td>\n",
           "    </tr>\n",
           "    <tr>\n",
           "      <th>13</th>\n",
           "      <td>2003</td>\n",
           "      <td>0.80</td>\n",
           "      <td>1.04</td>\n",
           "      <td>1.02</td>\n",
           "      <td>1.11</td>\n",
           "      <td>NaN</td>\n",
           "    </tr>\n",
           "    <tr>\n",
           "      <th>12</th>\n",
           "      <td>2002</td>\n",
           "      <td>0.77</td>\n",
           "      <td>1.03</td>\n",
           "      <td>1.00</td>\n",
           "      <td>1.10</td>\n",
           "      <td>NaN</td>\n",
           "    </tr>\n",
           "    <tr>\n",
           "      <th>11</th>\n",
           "      <td>2001</td>\n",
           "      <td>0.80</td>\n",
           "      <td>1.05</td>\n",
           "      <td>NaN</td>\n",
           "      <td>1.13</td>\n",
           "      <td>NaN</td>\n",
           "    </tr>\n",
           "    <tr>\n",
           "      <th>10</th>\n",
           "      <td>2000</td>\n",
           "      <td>0.85</td>\n",
           "      <td>1.11</td>\n",
           "      <td>NaN</td>\n",
           "      <td>1.18</td>\n",
           "      <td>NaN</td>\n",
           "    </tr>\n",
           "    <tr>\n",
           "      <th>9</th>\n",
           "      <td>1999</td>\n",
           "      <td>0.69</td>\n",
           "      <td>0.96</td>\n",
           "      <td>NaN</td>\n",
           "      <td>1.01</td>\n",
           "      <td>NaN</td>\n",
           "    </tr>\n",
           "    <tr>\n",
           "      <th>8</th>\n",
           "      <td>1998</td>\n",
           "      <td>0.64</td>\n",
           "      <td>0.93</td>\n",
           "      <td>NaN</td>\n",
           "      <td>0.96</td>\n",
           "      <td>NaN</td>\n",
           "    </tr>\n",
           "    <tr>\n",
           "      <th>7</th>\n",
           "      <td>1997</td>\n",
           "      <td>0.68</td>\n",
           "      <td>0.96</td>\n",
           "      <td>NaN</td>\n",
           "      <td>0.99</td>\n",
           "      <td>NaN</td>\n",
           "    </tr>\n",
           "    <tr>\n",
           "      <th>6</th>\n",
           "      <td>1996</td>\n",
           "      <td>0.66</td>\n",
           "      <td>0.92</td>\n",
           "      <td>NaN</td>\n",
           "      <td>0.96</td>\n",
           "      <td>NaN</td>\n",
           "    </tr>\n",
           "    <tr>\n",
           "      <th>5</th>\n",
           "      <td>1995</td>\n",
           "      <td>0.59</td>\n",
           "      <td>0.87</td>\n",
           "      <td>NaN</td>\n",
           "      <td>0.90</td>\n",
           "      <td>NaN</td>\n",
           "    </tr>\n",
           "    <tr>\n",
           "      <th>4</th>\n",
           "      <td>1994</td>\n",
           "      <td>0.60</td>\n",
           "      <td>0.82</td>\n",
           "      <td>NaN</td>\n",
           "      <td>0.87</td>\n",
           "      <td>NaN</td>\n",
           "    </tr>\n",
           "    <tr>\n",
           "      <th>3</th>\n",
           "      <td>1993</td>\n",
           "      <td>0.56</td>\n",
           "      <td>0.79</td>\n",
           "      <td>NaN</td>\n",
           "      <td>0.84</td>\n",
           "      <td>NaN</td>\n",
           "    </tr>\n",
           "    <tr>\n",
           "      <th>2</th>\n",
           "      <td>1992</td>\n",
           "      <td>0.54</td>\n",
           "      <td>0.78</td>\n",
           "      <td>NaN</td>\n",
           "      <td>0.81</td>\n",
           "      <td>NaN</td>\n",
           "    </tr>\n",
           "  </tbody>\n",
           "</table>\n",
           "</div>"
          ],
          "text/plain": [
           "    date  diesel_ttc  super_98_ttc  super_95_ttc  super_plombe_ttc  \\\n",
           "32  2022        1.81          1.89          1.83               NaN   \n",
           "31  2021        1.44          1.62          1.56               NaN   \n",
           "30  2020        1.27          1.42          1.37               NaN   \n",
           "29  2019        1.44          1.56          1.51               NaN   \n",
           "28  2018        1.44          1.57          1.51               NaN   \n",
           "27  2017        1.23          1.45          1.38               NaN   \n",
           "26  2016        1.11          1.35          1.32               NaN   \n",
           "25  2015        1.17          1.41          1.37               NaN   \n",
           "24  2014        1.30          1.54          1.50               NaN   \n",
           "23  2013        1.36          1.60          1.56               NaN   \n",
           "22  2012        1.41          1.63          1.59               NaN   \n",
           "21  2011        1.34          1.55          1.50               NaN   \n",
           "20  2010        1.16          1.40          1.36               NaN   \n",
           "19  2009        1.01          1.25          1.22               NaN   \n",
           "18  2008        1.28          1.42          1.38               NaN   \n",
           "17  2007        1.10          1.32          1.29               NaN   \n",
           "16  2006        1.09          1.29          1.25               NaN   \n",
           "15  2005        1.03          1.21          1.18              1.24   \n",
           "14  2004        0.89          1.09          1.08              1.16   \n",
           "13  2003        0.80          1.04          1.02              1.11   \n",
           "12  2002        0.77          1.03          1.00              1.10   \n",
           "11  2001        0.80          1.05           NaN              1.13   \n",
           "10  2000        0.85          1.11           NaN              1.18   \n",
           "9   1999        0.69          0.96           NaN              1.01   \n",
           "8   1998        0.64          0.93           NaN              0.96   \n",
           "7   1997        0.68          0.96           NaN              0.99   \n",
           "6   1996        0.66          0.92           NaN              0.96   \n",
           "5   1995        0.59          0.87           NaN              0.90   \n",
           "4   1994        0.60          0.82           NaN              0.87   \n",
           "3   1993        0.56          0.79           NaN              0.84   \n",
           "2   1992        0.54          0.78           NaN              0.81   \n",
           "\n",
           "    super_95_e10_ttc  \n",
           "32              1.80  \n",
           "31              1.54  \n",
           "30              1.35  \n",
           "29              1.49  \n",
           "28               NaN  \n",
           "27               NaN  \n",
           "26               NaN  \n",
           "25               NaN  \n",
           "24               NaN  \n",
           "23               NaN  \n",
           "22               NaN  \n",
           "21               NaN  \n",
           "20               NaN  \n",
           "19               NaN  \n",
           "18               NaN  \n",
           "17               NaN  \n",
           "16               NaN  \n",
           "15               NaN  \n",
           "14               NaN  \n",
           "13               NaN  \n",
           "12               NaN  \n",
           "11               NaN  \n",
           "10               NaN  \n",
           "9                NaN  \n",
           "8                NaN  \n",
           "7                NaN  \n",
           "6                NaN  \n",
           "5                NaN  \n",
           "4                NaN  \n",
           "3                NaN  \n",
           "2                NaN  "
          ]
         },
         "execution_count": 13,
         "metadata": {},
         "output_type": "execute_result"
        }
       ],
       "source": [
        "df_ann = df_mens.copy()\n",
        "df_ann[['annee','mois','jour']] = df_ann['date'].str.split('-',expand=True)\n",
        "df_ann.drop(['date','mois','jour'], axis=1, inplace=True)\n",
        "df_ann = df_ann.groupby(['annee']).agg({'diesel_ttc': ['mean'],'super_98_ttc': ['mean'],\n",
        "                                         'super_95_ttc': ['mean'],'super_plombe_ttc': ['mean'],\n",
        "                                         'super_95_e10_ttc': ['mean']}).round(2)\n",
        "df_ann.to_csv(\"prix_annuel_carburant.csv\")\n",
        "df_ann = pd.read_csv(\"prix_annuel_carburant.csv\", sep=\",\")\n",
        "os.remove(\"prix_annuel_carburant.csv\")\n",
        "df_ann = df_ann.iloc[2:, :]\n",
        "df_ann = df_ann.rename(columns={'Unnamed: 0': 'date'})\n",
        "for carburant, id_url in carburants.items():\n",
        "    df_ann = clean_df(carburant,df_ann)\n",
        "df_ann.sort_values(by='date',ascending = False, inplace= True)\n",
        "df_ann.to_csv(\"prix_litre_annuel_carburant.csv\", index=False, index_label=False)\n",
        "df_ann"
       ]
      },
      {
       "cell_type": "code",
       "execution_count": 14,
       "id": "ca94602c-9898-479d-aa7b-1ede366e6850",
       "metadata": {},
       "outputs": [
        {
         "name": "stdout",
         "output_type": "stream",
         "text": [
          "<class 'pandas.core.frame.DataFrame'>\n",
          "Int64Index: 31 entries, 32 to 2\n",
          "Data columns (total 6 columns):\n",
          " #   Column            Non-Null Count  Dtype  \n",
          "---  ------            --------------  -----  \n",
          " 0   date              31 non-null     object \n",
          " 1   diesel_ttc        31 non-null     float64\n",
          " 2   super_98_ttc      31 non-null     float64\n",
          " 3   super_95_ttc      21 non-null     float64\n",
          " 4   super_plombe_ttc  14 non-null     float64\n",
          " 5   super_95_e10_ttc  4 non-null      float64\n",
          "dtypes: float64(5), object(1)\n",
          "memory usage: 1.7+ KB\n"
         ]
        }
       ],
       "source": [
        "df_ann.describe()\n",
        "df_ann.info()"
       ]
      },
      {
       "cell_type": "code",
       "execution_count": 15,
       "id": "94720f2b-1184-4b0d-8d74-e03c5b80fd39",
       "metadata": {},
       "outputs": [
        {
         "data": {
          "text/html": [
           "<div>\n",
           "<style scoped>\n",
           "    .dataframe tbody tr th:only-of-type {\n",
           "        vertical-align: middle;\n",
           "    }\n",
           "\n",
           "    .dataframe tbody tr th {\n",
           "        vertical-align: top;\n",
           "    }\n",
           "\n",
           "    .dataframe thead th {\n",
           "        text-align: right;\n",
           "    }\n",
           "</style>\n",
           "<table border=\"1\" class=\"dataframe\">\n",
           "  <thead>\n",
           "    <tr style=\"text-align: right;\">\n",
           "      <th></th>\n",
           "      <th>date</th>\n",
           "      <th>diesel_ttc</th>\n",
           "      <th>super_98_ttc</th>\n",
           "      <th>super_95_ttc</th>\n",
           "      <th>super_plombe_ttc</th>\n",
           "      <th>super_95_e10_ttc</th>\n",
           "    </tr>\n",
           "  </thead>\n",
           "  <tbody>\n",
           "    <tr>\n",
           "      <th>0</th>\n",
           "      <td>2022-04-01</td>\n",
           "      <td>1.87</td>\n",
           "      <td>1.87</td>\n",
           "      <td>1.82</td>\n",
           "      <td>NaN</td>\n",
           "      <td>1.76</td>\n",
           "    </tr>\n",
           "    <tr>\n",
           "      <th>1</th>\n",
           "      <td>2022-03-01</td>\n",
           "      <td>2.02</td>\n",
           "      <td>2.05</td>\n",
           "      <td>2.00</td>\n",
           "      <td>NaN</td>\n",
           "      <td>1.96</td>\n",
           "    </tr>\n",
           "    <tr>\n",
           "      <th>2</th>\n",
           "      <td>2022-02-01</td>\n",
           "      <td>1.72</td>\n",
           "      <td>1.86</td>\n",
           "      <td>1.80</td>\n",
           "      <td>NaN</td>\n",
           "      <td>1.77</td>\n",
           "    </tr>\n",
           "    <tr>\n",
           "      <th>3</th>\n",
           "      <td>2022-01-01</td>\n",
           "      <td>1.63</td>\n",
           "      <td>1.77</td>\n",
           "      <td>1.71</td>\n",
           "      <td>NaN</td>\n",
           "      <td>1.69</td>\n",
           "    </tr>\n",
           "    <tr>\n",
           "      <th>4</th>\n",
           "      <td>2021-12-01</td>\n",
           "      <td>1.54</td>\n",
           "      <td>1.70</td>\n",
           "      <td>1.64</td>\n",
           "      <td>NaN</td>\n",
           "      <td>1.61</td>\n",
           "    </tr>\n",
           "    <tr>\n",
           "      <th>...</th>\n",
           "      <td>...</td>\n",
           "      <td>...</td>\n",
           "      <td>...</td>\n",
           "      <td>...</td>\n",
           "      <td>...</td>\n",
           "      <td>...</td>\n",
           "    </tr>\n",
           "    <tr>\n",
           "      <th>359</th>\n",
           "      <td>1992-05-01</td>\n",
           "      <td>0.54</td>\n",
           "      <td>0.78</td>\n",
           "      <td>NaN</td>\n",
           "      <td>0.81</td>\n",
           "      <td>NaN</td>\n",
           "    </tr>\n",
           "    <tr>\n",
           "      <th>360</th>\n",
           "      <td>1992-04-01</td>\n",
           "      <td>0.53</td>\n",
           "      <td>0.77</td>\n",
           "      <td>NaN</td>\n",
           "      <td>0.81</td>\n",
           "      <td>NaN</td>\n",
           "    </tr>\n",
           "    <tr>\n",
           "      <th>361</th>\n",
           "      <td>1992-03-01</td>\n",
           "      <td>0.54</td>\n",
           "      <td>0.77</td>\n",
           "      <td>NaN</td>\n",
           "      <td>0.81</td>\n",
           "      <td>NaN</td>\n",
           "    </tr>\n",
           "    <tr>\n",
           "      <th>362</th>\n",
           "      <td>1992-02-01</td>\n",
           "      <td>0.54</td>\n",
           "      <td>0.78</td>\n",
           "      <td>NaN</td>\n",
           "      <td>0.81</td>\n",
           "      <td>NaN</td>\n",
           "    </tr>\n",
           "    <tr>\n",
           "      <th>363</th>\n",
           "      <td>1992-01-01</td>\n",
           "      <td>0.54</td>\n",
           "      <td>0.78</td>\n",
           "      <td>NaN</td>\n",
           "      <td>0.80</td>\n",
           "      <td>NaN</td>\n",
           "    </tr>\n",
           "  </tbody>\n",
           "</table>\n",
           "<p>364 rows × 6 columns</p>\n",
           "</div>"
          ],
          "text/plain": [
           "           date  diesel_ttc  super_98_ttc  super_95_ttc  super_plombe_ttc  \\\n",
           "0    2022-04-01        1.87          1.87          1.82               NaN   \n",
           "1    2022-03-01        2.02          2.05          2.00               NaN   \n",
           "2    2022-02-01        1.72          1.86          1.80               NaN   \n",
           "3    2022-01-01        1.63          1.77          1.71               NaN   \n",
           "4    2021-12-01        1.54          1.70          1.64               NaN   \n",
           "..          ...         ...           ...           ...               ...   \n",
           "359  1992-05-01        0.54          0.78           NaN              0.81   \n",
           "360  1992-04-01        0.53          0.77           NaN              0.81   \n",
           "361  1992-03-01        0.54          0.77           NaN              0.81   \n",
           "362  1992-02-01        0.54          0.78           NaN              0.81   \n",
           "363  1992-01-01        0.54          0.78           NaN              0.80   \n",
           "\n",
           "     super_95_e10_ttc  \n",
           "0                1.76  \n",
           "1                1.96  \n",
           "2                1.77  \n",
           "3                1.69  \n",
           "4                1.61  \n",
           "..                ...  \n",
           "359               NaN  \n",
           "360               NaN  \n",
           "361               NaN  \n",
           "362               NaN  \n",
           "363               NaN  \n",
           "\n",
           "[364 rows x 6 columns]"
          ]
         },
         "execution_count": 15,
         "metadata": {},
         "output_type": "execute_result"
        }
       ],
       "source": [
        "df_mens"
       ]
      },
      {
       "cell_type": "code",
       "execution_count": 16,
       "id": "02992af3-7110-4f17-9ac2-f4f0f2fdc4de",
       "metadata": {},
       "outputs": [],
       "source": [
        "df_mens.loc[:,['diesel_ttc','super_98_ttc','super_95_ttc','super_plombe_ttc','super_95_e10_ttc']] *= 100\n",
        "df_mens[['diesel_ttc','super_98_ttc','super_95_ttc','super_plombe_ttc','super_95_e10_ttc']] = df_mens[['diesel_ttc','super_98_ttc','super_95_ttc','super_plombe_ttc','super_95_e10_ttc']].round(0)\n",
        "df_mens.to_csv(\"prix_hectolitre_mensuel_carburant.csv\", index=False, index_label=False)"
       ]
      },
      {
       "cell_type": "code",
       "execution_count": 17,
       "id": "62b9b211-5aa0-4180-8eea-33b6bc2ac4eb",
       "metadata": {},
       "outputs": [
        {
         "data": {
          "text/html": [
           "<div>\n",
           "<style scoped>\n",
           "    .dataframe tbody tr th:only-of-type {\n",
           "        vertical-align: middle;\n",
           "    }\n",
           "\n",
           "    .dataframe tbody tr th {\n",
           "        vertical-align: top;\n",
           "    }\n",
           "\n",
           "    .dataframe thead th {\n",
           "        text-align: right;\n",
           "    }\n",
           "</style>\n",
           "<table border=\"1\" class=\"dataframe\">\n",
           "  <thead>\n",
           "    <tr style=\"text-align: right;\">\n",
           "      <th></th>\n",
           "      <th>date</th>\n",
           "      <th>diesel_ttc</th>\n",
           "      <th>super_98_ttc</th>\n",
           "      <th>super_95_ttc</th>\n",
           "      <th>super_plombe_ttc</th>\n",
           "      <th>super_95_e10_ttc</th>\n",
           "    </tr>\n",
           "  </thead>\n",
           "  <tbody>\n",
           "    <tr>\n",
           "      <th>0</th>\n",
           "      <td>2022-04-01</td>\n",
           "      <td>187.0</td>\n",
           "      <td>187.0</td>\n",
           "      <td>182.0</td>\n",
           "      <td>NaN</td>\n",
           "      <td>176.0</td>\n",
           "    </tr>\n",
           "    <tr>\n",
           "      <th>1</th>\n",
           "      <td>2022-03-01</td>\n",
           "      <td>202.0</td>\n",
           "      <td>205.0</td>\n",
           "      <td>200.0</td>\n",
           "      <td>NaN</td>\n",
           "      <td>196.0</td>\n",
           "    </tr>\n",
           "    <tr>\n",
           "      <th>2</th>\n",
           "      <td>2022-02-01</td>\n",
           "      <td>172.0</td>\n",
           "      <td>186.0</td>\n",
           "      <td>180.0</td>\n",
           "      <td>NaN</td>\n",
           "      <td>177.0</td>\n",
           "    </tr>\n",
           "    <tr>\n",
           "      <th>3</th>\n",
           "      <td>2022-01-01</td>\n",
           "      <td>163.0</td>\n",
           "      <td>177.0</td>\n",
           "      <td>171.0</td>\n",
           "      <td>NaN</td>\n",
           "      <td>169.0</td>\n",
           "    </tr>\n",
           "    <tr>\n",
           "      <th>4</th>\n",
           "      <td>2021-12-01</td>\n",
           "      <td>154.0</td>\n",
           "      <td>170.0</td>\n",
           "      <td>164.0</td>\n",
           "      <td>NaN</td>\n",
           "      <td>161.0</td>\n",
           "    </tr>\n",
           "    <tr>\n",
           "      <th>...</th>\n",
           "      <td>...</td>\n",
           "      <td>...</td>\n",
           "      <td>...</td>\n",
           "      <td>...</td>\n",
           "      <td>...</td>\n",
           "      <td>...</td>\n",
           "    </tr>\n",
           "    <tr>\n",
           "      <th>359</th>\n",
           "      <td>1992-05-01</td>\n",
           "      <td>54.0</td>\n",
           "      <td>78.0</td>\n",
           "      <td>NaN</td>\n",
           "      <td>81.0</td>\n",
           "      <td>NaN</td>\n",
           "    </tr>\n",
           "    <tr>\n",
           "      <th>360</th>\n",
           "      <td>1992-04-01</td>\n",
           "      <td>53.0</td>\n",
           "      <td>77.0</td>\n",
           "      <td>NaN</td>\n",
           "      <td>81.0</td>\n",
           "      <td>NaN</td>\n",
           "    </tr>\n",
           "    <tr>\n",
           "      <th>361</th>\n",
           "      <td>1992-03-01</td>\n",
           "      <td>54.0</td>\n",
           "      <td>77.0</td>\n",
           "      <td>NaN</td>\n",
           "      <td>81.0</td>\n",
           "      <td>NaN</td>\n",
           "    </tr>\n",
           "    <tr>\n",
           "      <th>362</th>\n",
           "      <td>1992-02-01</td>\n",
           "      <td>54.0</td>\n",
           "      <td>78.0</td>\n",
           "      <td>NaN</td>\n",
           "      <td>81.0</td>\n",
           "      <td>NaN</td>\n",
           "    </tr>\n",
           "    <tr>\n",
           "      <th>363</th>\n",
           "      <td>1992-01-01</td>\n",
           "      <td>54.0</td>\n",
           "      <td>78.0</td>\n",
           "      <td>NaN</td>\n",
           "      <td>80.0</td>\n",
           "      <td>NaN</td>\n",
           "    </tr>\n",
           "  </tbody>\n",
           "</table>\n",
           "<p>364 rows × 6 columns</p>\n",
           "</div>"
          ],
          "text/plain": [
           "           date  diesel_ttc  super_98_ttc  super_95_ttc  super_plombe_ttc  \\\n",
           "0    2022-04-01       187.0         187.0         182.0               NaN   \n",
           "1    2022-03-01       202.0         205.0         200.0               NaN   \n",
           "2    2022-02-01       172.0         186.0         180.0               NaN   \n",
           "3    2022-01-01       163.0         177.0         171.0               NaN   \n",
           "4    2021-12-01       154.0         170.0         164.0               NaN   \n",
           "..          ...         ...           ...           ...               ...   \n",
           "359  1992-05-01        54.0          78.0           NaN              81.0   \n",
           "360  1992-04-01        53.0          77.0           NaN              81.0   \n",
           "361  1992-03-01        54.0          77.0           NaN              81.0   \n",
           "362  1992-02-01        54.0          78.0           NaN              81.0   \n",
           "363  1992-01-01        54.0          78.0           NaN              80.0   \n",
           "\n",
           "     super_95_e10_ttc  \n",
           "0               176.0  \n",
           "1               196.0  \n",
           "2               177.0  \n",
           "3               169.0  \n",
           "4               161.0  \n",
           "..                ...  \n",
           "359               NaN  \n",
           "360               NaN  \n",
           "361               NaN  \n",
           "362               NaN  \n",
           "363               NaN  \n",
           "\n",
           "[364 rows x 6 columns]"
          ]
         },
         "execution_count": 17,
         "metadata": {},
         "output_type": "execute_result"
        }
       ],
       "source": [
        "df_mens"
       ]
      },
      {
       "cell_type": "code",
       "execution_count": 18,
       "id": "372a7fe6-f63d-496b-87b8-171c1888ae81",
       "metadata": {},
       "outputs": [],
       "source": [
        "df_ann.loc[:,['diesel_ttc','super_98_ttc','super_95_ttc','super_plombe_ttc','super_95_e10_ttc']] *= 100\n",
        "df_ann[['diesel_ttc','super_98_ttc','super_95_ttc','super_plombe_ttc','super_95_e10_ttc']] = df_ann[['diesel_ttc','super_98_ttc','super_95_ttc','super_plombe_ttc','super_95_e10_ttc']].round(0)\n",
        "df_ann.to_csv(\"prix_hectolitre_annuel_carburant.csv\", index=False, index_label=False)"
       ]
      },
      {
       "cell_type": "code",
       "execution_count": 19,
       "id": "96ecd7ec-784e-46d6-92ea-5e53a29984f6",
       "metadata": {},
       "outputs": [
        {
         "data": {
          "text/html": [
           "<div>\n",
           "<style scoped>\n",
           "    .dataframe tbody tr th:only-of-type {\n",
           "        vertical-align: middle;\n",
           "    }\n",
           "\n",
           "    .dataframe tbody tr th {\n",
           "        vertical-align: top;\n",
           "    }\n",
           "\n",
           "    .dataframe thead th {\n",
           "        text-align: right;\n",
           "    }\n",
           "</style>\n",
           "<table border=\"1\" class=\"dataframe\">\n",
           "  <thead>\n",
           "    <tr style=\"text-align: right;\">\n",
           "      <th></th>\n",
           "      <th>date</th>\n",
           "      <th>diesel_ttc</th>\n",
           "      <th>super_98_ttc</th>\n",
           "      <th>super_95_ttc</th>\n",
           "      <th>super_plombe_ttc</th>\n",
           "      <th>super_95_e10_ttc</th>\n",
           "    </tr>\n",
           "  </thead>\n",
           "  <tbody>\n",
           "    <tr>\n",
           "      <th>32</th>\n",
           "      <td>2022</td>\n",
           "      <td>181.0</td>\n",
           "      <td>189.0</td>\n",
           "      <td>183.0</td>\n",
           "      <td>NaN</td>\n",
           "      <td>180.0</td>\n",
           "    </tr>\n",
           "    <tr>\n",
           "      <th>31</th>\n",
           "      <td>2021</td>\n",
           "      <td>144.0</td>\n",
           "      <td>162.0</td>\n",
           "      <td>156.0</td>\n",
           "      <td>NaN</td>\n",
           "      <td>154.0</td>\n",
           "    </tr>\n",
           "    <tr>\n",
           "      <th>30</th>\n",
           "      <td>2020</td>\n",
           "      <td>127.0</td>\n",
           "      <td>142.0</td>\n",
           "      <td>137.0</td>\n",
           "      <td>NaN</td>\n",
           "      <td>135.0</td>\n",
           "    </tr>\n",
           "    <tr>\n",
           "      <th>29</th>\n",
           "      <td>2019</td>\n",
           "      <td>144.0</td>\n",
           "      <td>156.0</td>\n",
           "      <td>151.0</td>\n",
           "      <td>NaN</td>\n",
           "      <td>149.0</td>\n",
           "    </tr>\n",
           "    <tr>\n",
           "      <th>28</th>\n",
           "      <td>2018</td>\n",
           "      <td>144.0</td>\n",
           "      <td>157.0</td>\n",
           "      <td>151.0</td>\n",
           "      <td>NaN</td>\n",
           "      <td>NaN</td>\n",
           "    </tr>\n",
           "    <tr>\n",
           "      <th>27</th>\n",
           "      <td>2017</td>\n",
           "      <td>123.0</td>\n",
           "      <td>145.0</td>\n",
           "      <td>138.0</td>\n",
           "      <td>NaN</td>\n",
           "      <td>NaN</td>\n",
           "    </tr>\n",
           "    <tr>\n",
           "      <th>26</th>\n",
           "      <td>2016</td>\n",
           "      <td>111.0</td>\n",
           "      <td>135.0</td>\n",
           "      <td>132.0</td>\n",
           "      <td>NaN</td>\n",
           "      <td>NaN</td>\n",
           "    </tr>\n",
           "    <tr>\n",
           "      <th>25</th>\n",
           "      <td>2015</td>\n",
           "      <td>117.0</td>\n",
           "      <td>141.0</td>\n",
           "      <td>137.0</td>\n",
           "      <td>NaN</td>\n",
           "      <td>NaN</td>\n",
           "    </tr>\n",
           "    <tr>\n",
           "      <th>24</th>\n",
           "      <td>2014</td>\n",
           "      <td>130.0</td>\n",
           "      <td>154.0</td>\n",
           "      <td>150.0</td>\n",
           "      <td>NaN</td>\n",
           "      <td>NaN</td>\n",
           "    </tr>\n",
           "    <tr>\n",
           "      <th>23</th>\n",
           "      <td>2013</td>\n",
           "      <td>136.0</td>\n",
           "      <td>160.0</td>\n",
           "      <td>156.0</td>\n",
           "      <td>NaN</td>\n",
           "      <td>NaN</td>\n",
           "    </tr>\n",
           "    <tr>\n",
           "      <th>22</th>\n",
           "      <td>2012</td>\n",
           "      <td>141.0</td>\n",
           "      <td>163.0</td>\n",
           "      <td>159.0</td>\n",
           "      <td>NaN</td>\n",
           "      <td>NaN</td>\n",
           "    </tr>\n",
           "    <tr>\n",
           "      <th>21</th>\n",
           "      <td>2011</td>\n",
           "      <td>134.0</td>\n",
           "      <td>155.0</td>\n",
           "      <td>150.0</td>\n",
           "      <td>NaN</td>\n",
           "      <td>NaN</td>\n",
           "    </tr>\n",
           "    <tr>\n",
           "      <th>20</th>\n",
           "      <td>2010</td>\n",
           "      <td>116.0</td>\n",
           "      <td>140.0</td>\n",
           "      <td>136.0</td>\n",
           "      <td>NaN</td>\n",
           "      <td>NaN</td>\n",
           "    </tr>\n",
           "    <tr>\n",
           "      <th>19</th>\n",
           "      <td>2009</td>\n",
           "      <td>101.0</td>\n",
           "      <td>125.0</td>\n",
           "      <td>122.0</td>\n",
           "      <td>NaN</td>\n",
           "      <td>NaN</td>\n",
           "    </tr>\n",
           "    <tr>\n",
           "      <th>18</th>\n",
           "      <td>2008</td>\n",
           "      <td>128.0</td>\n",
           "      <td>142.0</td>\n",
           "      <td>138.0</td>\n",
           "      <td>NaN</td>\n",
           "      <td>NaN</td>\n",
           "    </tr>\n",
           "    <tr>\n",
           "      <th>17</th>\n",
           "      <td>2007</td>\n",
           "      <td>110.0</td>\n",
           "      <td>132.0</td>\n",
           "      <td>129.0</td>\n",
           "      <td>NaN</td>\n",
           "      <td>NaN</td>\n",
           "    </tr>\n",
           "    <tr>\n",
           "      <th>16</th>\n",
           "      <td>2006</td>\n",
           "      <td>109.0</td>\n",
           "      <td>129.0</td>\n",
           "      <td>125.0</td>\n",
           "      <td>NaN</td>\n",
           "      <td>NaN</td>\n",
           "    </tr>\n",
           "    <tr>\n",
           "      <th>15</th>\n",
           "      <td>2005</td>\n",
           "      <td>103.0</td>\n",
           "      <td>121.0</td>\n",
           "      <td>118.0</td>\n",
           "      <td>124.0</td>\n",
           "      <td>NaN</td>\n",
           "    </tr>\n",
           "    <tr>\n",
           "      <th>14</th>\n",
           "      <td>2004</td>\n",
           "      <td>89.0</td>\n",
           "      <td>109.0</td>\n",
           "      <td>108.0</td>\n",
           "      <td>116.0</td>\n",
           "      <td>NaN</td>\n",
           "    </tr>\n",
           "    <tr>\n",
           "      <th>13</th>\n",
           "      <td>2003</td>\n",
           "      <td>80.0</td>\n",
           "      <td>104.0</td>\n",
           "      <td>102.0</td>\n",
           "      <td>111.0</td>\n",
           "      <td>NaN</td>\n",
           "    </tr>\n",
           "    <tr>\n",
           "      <th>12</th>\n",
           "      <td>2002</td>\n",
           "      <td>77.0</td>\n",
           "      <td>103.0</td>\n",
           "      <td>100.0</td>\n",
           "      <td>110.0</td>\n",
           "      <td>NaN</td>\n",
           "    </tr>\n",
           "    <tr>\n",
           "      <th>11</th>\n",
           "      <td>2001</td>\n",
           "      <td>80.0</td>\n",
           "      <td>105.0</td>\n",
           "      <td>NaN</td>\n",
           "      <td>113.0</td>\n",
           "      <td>NaN</td>\n",
           "    </tr>\n",
           "    <tr>\n",
           "      <th>10</th>\n",
           "      <td>2000</td>\n",
           "      <td>85.0</td>\n",
           "      <td>111.0</td>\n",
           "      <td>NaN</td>\n",
           "      <td>118.0</td>\n",
           "      <td>NaN</td>\n",
           "    </tr>\n",
           "    <tr>\n",
           "      <th>9</th>\n",
           "      <td>1999</td>\n",
           "      <td>69.0</td>\n",
           "      <td>96.0</td>\n",
           "      <td>NaN</td>\n",
           "      <td>101.0</td>\n",
           "      <td>NaN</td>\n",
           "    </tr>\n",
           "    <tr>\n",
           "      <th>8</th>\n",
           "      <td>1998</td>\n",
           "      <td>64.0</td>\n",
           "      <td>93.0</td>\n",
           "      <td>NaN</td>\n",
           "      <td>96.0</td>\n",
           "      <td>NaN</td>\n",
           "    </tr>\n",
           "    <tr>\n",
           "      <th>7</th>\n",
           "      <td>1997</td>\n",
           "      <td>68.0</td>\n",
           "      <td>96.0</td>\n",
           "      <td>NaN</td>\n",
           "      <td>99.0</td>\n",
           "      <td>NaN</td>\n",
           "    </tr>\n",
           "    <tr>\n",
           "      <th>6</th>\n",
           "      <td>1996</td>\n",
           "      <td>66.0</td>\n",
           "      <td>92.0</td>\n",
           "      <td>NaN</td>\n",
           "      <td>96.0</td>\n",
           "      <td>NaN</td>\n",
           "    </tr>\n",
           "    <tr>\n",
           "      <th>5</th>\n",
           "      <td>1995</td>\n",
           "      <td>59.0</td>\n",
           "      <td>87.0</td>\n",
           "      <td>NaN</td>\n",
           "      <td>90.0</td>\n",
           "      <td>NaN</td>\n",
           "    </tr>\n",
           "    <tr>\n",
           "      <th>4</th>\n",
           "      <td>1994</td>\n",
           "      <td>60.0</td>\n",
           "      <td>82.0</td>\n",
           "      <td>NaN</td>\n",
           "      <td>87.0</td>\n",
           "      <td>NaN</td>\n",
           "    </tr>\n",
           "    <tr>\n",
           "      <th>3</th>\n",
           "      <td>1993</td>\n",
           "      <td>56.0</td>\n",
           "      <td>79.0</td>\n",
           "      <td>NaN</td>\n",
           "      <td>84.0</td>\n",
           "      <td>NaN</td>\n",
           "    </tr>\n",
           "    <tr>\n",
           "      <th>2</th>\n",
           "      <td>1992</td>\n",
           "      <td>54.0</td>\n",
           "      <td>78.0</td>\n",
           "      <td>NaN</td>\n",
           "      <td>81.0</td>\n",
           "      <td>NaN</td>\n",
           "    </tr>\n",
           "  </tbody>\n",
           "</table>\n",
           "</div>"
          ],
          "text/plain": [
           "    date  diesel_ttc  super_98_ttc  super_95_ttc  super_plombe_ttc  \\\n",
           "32  2022       181.0         189.0         183.0               NaN   \n",
           "31  2021       144.0         162.0         156.0               NaN   \n",
           "30  2020       127.0         142.0         137.0               NaN   \n",
           "29  2019       144.0         156.0         151.0               NaN   \n",
           "28  2018       144.0         157.0         151.0               NaN   \n",
           "27  2017       123.0         145.0         138.0               NaN   \n",
           "26  2016       111.0         135.0         132.0               NaN   \n",
           "25  2015       117.0         141.0         137.0               NaN   \n",
           "24  2014       130.0         154.0         150.0               NaN   \n",
           "23  2013       136.0         160.0         156.0               NaN   \n",
           "22  2012       141.0         163.0         159.0               NaN   \n",
           "21  2011       134.0         155.0         150.0               NaN   \n",
           "20  2010       116.0         140.0         136.0               NaN   \n",
           "19  2009       101.0         125.0         122.0               NaN   \n",
           "18  2008       128.0         142.0         138.0               NaN   \n",
           "17  2007       110.0         132.0         129.0               NaN   \n",
           "16  2006       109.0         129.0         125.0               NaN   \n",
           "15  2005       103.0         121.0         118.0             124.0   \n",
           "14  2004        89.0         109.0         108.0             116.0   \n",
           "13  2003        80.0         104.0         102.0             111.0   \n",
           "12  2002        77.0         103.0         100.0             110.0   \n",
           "11  2001        80.0         105.0           NaN             113.0   \n",
           "10  2000        85.0         111.0           NaN             118.0   \n",
           "9   1999        69.0          96.0           NaN             101.0   \n",
           "8   1998        64.0          93.0           NaN              96.0   \n",
           "7   1997        68.0          96.0           NaN              99.0   \n",
           "6   1996        66.0          92.0           NaN              96.0   \n",
           "5   1995        59.0          87.0           NaN              90.0   \n",
           "4   1994        60.0          82.0           NaN              87.0   \n",
           "3   1993        56.0          79.0           NaN              84.0   \n",
           "2   1992        54.0          78.0           NaN              81.0   \n",
           "\n",
           "    super_95_e10_ttc  \n",
           "32             180.0  \n",
           "31             154.0  \n",
           "30             135.0  \n",
           "29             149.0  \n",
           "28               NaN  \n",
           "27               NaN  \n",
           "26               NaN  \n",
           "25               NaN  \n",
           "24               NaN  \n",
           "23               NaN  \n",
           "22               NaN  \n",
           "21               NaN  \n",
           "20               NaN  \n",
           "19               NaN  \n",
           "18               NaN  \n",
           "17               NaN  \n",
           "16               NaN  \n",
           "15               NaN  \n",
           "14               NaN  \n",
           "13               NaN  \n",
           "12               NaN  \n",
           "11               NaN  \n",
           "10               NaN  \n",
           "9                NaN  \n",
           "8                NaN  \n",
           "7                NaN  \n",
           "6                NaN  \n",
           "5                NaN  \n",
           "4                NaN  \n",
           "3                NaN  \n",
           "2                NaN  "
          ]
         },
         "execution_count": 19,
         "metadata": {},
         "output_type": "execute_result"
        }
       ],
       "source": [
        "df_ann"
       ]
      },
      {
       "cell_type": "code",
       "execution_count": null,
       "id": "0d51c958-7441-4b29-a672-c41cc8b64eb8",
       "metadata": {},
       "outputs": [],
       "source": []
      }
     ],
     "metadata": {
      "interpreter": {
       "hash": "916dbcbb3f70747c44a77c7bcd40155683ae19c65e1c03b4aa3499c5328201f1"
      },
      "kernelspec": {
       "display_name": "Python 3.8.10 64-bit",
       "language": "python",
       "name": "python3"
      },
      "language_info": {
       "codemirror_mode": {
        "name": "ipython",
        "version": 3
       },
       "file_extension": ".py",
       "mimetype": "text/x-python",
       "name": "python",
       "nbconvert_exporter": "python",
       "pygments_lexer": "ipython3",
       "version": "3.8.10"
      },
      "toc-autonumbering": true,
      "toc-showmarkdowntxt": false
     },
     "nbformat": 4,
     "nbformat_minor": 5
    }